Skip to main content

Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover

The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL. We envision updating this process design report at regular intervals; the purpose being to ensure that the process design incorporates all new data from NREL research, DOE funded research and other sources, and that the equipment costs are reasonable and consistent with good engineering practice for plants of this type. For the non-research areas this means using equipment and process approaches as they are currently used in industrial applications. For the last report 1, published in 1999, NREL performed a complete review and update of the process design and economic model for the biomass-to-ethanol process utilizing co-current dilute acid prehydrolysis with simultaneous saccharification (enzymatic) and co-fermentation. The process design included the core technologies being researched by the DOE: prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production. In addition, all ancillary areas feed handling, product recovery and purification, wastewater treatment (WWT), lignin combustor and boiler-turbogenerator and utilities were included. NREL engaged Delta-T Corporation (Delta-T) to assist in the process design evaluation, the process equipment costing, and overall plant integration. The process design and costing for the lignin combustor and boiler turbogenerator was reviewed by Reaction Engineering Inc.

Author(s)
Aden, A.
Contact Person
Aden, A.
Contact Email
Bioenergy Category
DOI is live on OSTI.
Data Source
NATIONAL RENEWABLE ENERGY LAB