For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability of the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw. In this paper we report the results of 2 yr of field research testing and enhancing the DSS4Ag?s ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock. For both years, the DSS4Ag reduced the cost and amount of fertilizers used and increased grower profit, while reducing the biomass produced. The DSS4Ag results show that when a biorefinery infrastructure is in place and growers have a strong market for their straw it is not economically advantageous to increase fertilization in order to try to produce more straw. This suggests that other solutions, such as single-pass selective harvest, must be implemented to meet national goals for the amount of biomass that will be available for collection and use for bioenergy.

Contact Information
Contact Person: 
Reed L. Hoskinson
Publication Information
Author: 
Hoskinson Reed L.
DOE Information
Bioenergy Category: