

HYSYS v8.8 Biocrude Hydrodeoxygenation Refinery Simulation

Simulation Structure: Input of Oxygenates into a HYSYS Hydrotreater Model

Mark Bearden <u>Mark.Bearden@pnnl.gov</u>

PNNL-SA-132933

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor the Alliance for Sustainable Energy, LLC, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof, or the Alliance for Sustainable Energy, LLC, or Battelle Memorial Institute.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy

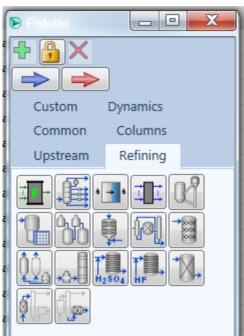
Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC, under contract DE-AC36-08GO28308.

Pacific Northwest National Laboratory is operated by Battelle for the United States Department of Energy under contract DE-AC05-76RL01830.


Overview of Slide Deck

- Explanation of why HYSYS was used
- HYSYS linkage to Aspen Properties
- Brief intro to setting up the HYSYS hydrotreater model
 - Setting up the petroleum stream assay for the conventional feed stream
 - Setting up the biocrude feed stream
 - Building the stoichiometric reaction set for the oxygenated components

Why Aspen HYSYS[®] ?

- In general HYSYS has historically been used by refiners rather than Aspen Plus.
 - Specialized refinery reactor models have been and are continually being developed in HYSYS
 - Specialized pseudocomponent and property generation are in Aspen Properties, AspenPlus, and Aspen HYSYS

17 Specialized Petroleum unit operations in HYSYS including:

Petroleum Feeder, Petroleum distillation column, Assay manipulator, Product blender, Fluidized Catalytic Cracker, Petroleum shift reactor, Catalytic reformer, Hydrocracker, Isomerization, Hydroprocessor bed, Delayed coker, Visbreaker, H2SO4 alkylation, HF alkylation, Naphtha hydrotreater, Catgas hydrotreater SHU, Catgas hydrotreater HDS

However - Oxygenates are not handled in HYSYS

- Petroleum has virtually no oxygenates
- Hydrodeoxygenation is known to occur over conventional hydrotreating catalysts but oxygenated compounds are rare in petroleum; AspenTech has not (yet) added models or property operations to handle oxygenated feeds within HYSYS.
- In this simulation a conventional HYSYS stoichiometric reactor model is added to hydrotreat a few oxygenated compounds known to be in Biocrude (hydrothermal liquefaction product).
- The reactions extent is arbitrarily set to a fixed conversion but kinetics can be added to the reactors if known

Aspen Physical Properties are required

Most of the oxygenate physical properties are not in the HYSYS databank. They are found in Aspen or NIST databanks which can be accessed through linking HYSYS to Aspen Physical Properties. This cannot be done directly by HYSYS

Impact on token usage:

- This means 18 more tokens are checked out using this simulation as well as the "layered product" REFSYS (24 more tokens) refining system required for the HBED and other refinery reactor models (in the Refining section of the unit operation palette.
- Thus this simulation requires HYSYS tokens (14) + Aspen Properties (18) + Aspen Refining System (24) = 56 tokens to run

Create the VGO Assay

In Properties Mode

- Select "Petroleum Assay" on left hand side of screen
- Select "add assay" from bottom of the screen
- Select "Middle East Region" (example used in model)

Screen shots for this shown on next slide

Set up VGO Assay

Start in HYSYS Properties mode

Select Petroleum Assays – for this case "Arabian Light 2012 was from the list options available.

Properties <	Component Lists × HTLBiocrude - I	nput Assay × Pet	troleum Assays × 🕂						
All Items 🔹	Assay Summary								
4 👼 Component Lists									
📷 Component List - 1	Display: All Regions 🔻								
🗔 Component List - 2	·								
🔺 📷 Fluid Packages	Assay	Characterization Method	Status	Fluid Package	From Source	Density (lb/ft3)	Sulfur (%)	Viscosity (cSt) @ 100 F	Watson K
📷 Basis-1		Method						1001	
The second secon	<u>A</u> a	Aa 🗸	Aa	• <u>A</u> a •	<u>A</u> a 💌	=	=	=	
Petroleum Assays	Arabian Light-2012	Conventional	Characterized Successfully	Basis-1	Aspen Assa	53.40	1.873	4.85313	11.284
Arabian Light-2012	Petroleum Assays m Boilup	Conventional	Characterized Successfully	Basis-1	Converted f	56.03	0.000		12.4841
Input Assay	DKm HBF1		,			49.13			11.5923
▲ MTLBiocrude		Conventional	Characterized Successfully	Basis-1	Converted f				
Input Assay	Assay from HTRProd	Conventional	Characterized Successfully	Basis-1	Converted f	56.48	0.000		12.8662
Conventional Results	Assay from HTRProd - 1	Conventional	Characterized Successfully	Basis-1	Converted f	58.23	0.001		11.7062
🕨 🗹 Assay from HBF1	Assay from Lights	Conventional	Characterized Successfully	Basis-1	Converted f	38.92			13.18
🔺 🗹 Assay from Lights	Assay from Lights - 1	Conventional	Characterized Successfully	Basis-1	Converted f	38.96			13.173
Input Assay		Conventional		Basis-1		50.35			11.5924
Conventional Results	Assay from LIQ		Characterized Successfully		Converted f				
Assay from LIQ	Assay from Liq300	Conventional	Characterized Successfully	Basis-1	Converted f	47.93	0.000		11.9222
Assay from Reflux	Assay from Reflux	Conventional	Characterized Successfully	Basis-1	Converted f	50.35			11.5924
Assay from To Condenser	Assay from To Condenser	Conventional	Characterized Successfully	Basis-1	Converted f	50.87			11.55
👌 📈 Assay from Boilup	Assay from To Condenser - 1	Conventional	Characterized Successfully	Basis-1	Converted f	43.98			12.3073
🕨 🗹 Assay from To Reboiler	Assay from To Reboiler	Conventional	Characterized Successfully	Basis-1	Converted f	55.25	0.000		13.0613
Assay from Lights - 1									
Assay from Liq300	Assay from To Reboiler - 1	Conventional	Characterized Successfully	Basis-1	Converted f	58.14	0.002		11.4801
Assay from HTRProd - 1	HTLBiocrude	Conventional	Characterized Successfully	Basis-1	User-Specif	60.86	1.120		10.4338
Assay from To Condenser									

- 👂 🗹 Assay from To Reboiler -
- 👂 📷 Reactions
- Component Maps
 Coll 2 Map Default
 - Coll 3 Map Default
 - Coll 3 Map 1

8

Biocrude Assay (Manual Entry)

References:

- Co-processing potential of HTL bio-crude at petroleum refineries – Part 1: Fractional distillation and characterization; Jessica Hoffmann, Claus Uhrenholt Jensen, Lasse A. Rosendahl; Fuel 165 (2016) 526–535.
- Co-processing potential of HTL bio-crude at petroleum refineries - Part 2: A parametric hydrotreating study; Claus Uhrenholt Jensen, Jessica Hoffmann, Lasse A. Rosendahl;

Input HTL Biocrude Assay Manually

Properties <	C	omponent Lists × HTLBiocru	ude - Input Assay	< Arabian Lig	ht-2012 - Input	Assay 🛛 🛨										
All Items 🔹		Input Summary Pure Compo	onent Distillation	Data												
Component Lists	E.		I I													
Component List - 1			Whole Crude	Cut 1	Cut 2	Cut 3	Cut 4	Cut 5	Cut 6	Cut 7	Cut 8	Cut 9	Cut 10	Cut 11	Cut 12	Cut 13
Component List - 2		Initial Temperature (F)	IBP	IBP	212.0000	257.0000	302.0000	347.0000	392.0000	437.0000	482.0000	527.0000	572.0000	617.0000	662.0000	707.000
Basis-1		Final Temperature (F)	FBP	212.0000	257.0000	302.0000	347.0000	392.0000	437.0000	482.0000	527.0000	572.0000	617.0000	662.0000	707.0000	FB
CONTRACTOR OF CO		4														
🔺 📷 Petroleum Assays		CutYieldByWt (%)		1.14	2.35	10.10	0.38	2.14	2.97	5.20	6.35	5.61	6.28	7.62	5.67	44.19
🔺 🗹 Arabian Light-2012		StdLiquidDensity (lb/ft3)	60.8633	38.8903	49.6792	52.4078	54.3962	55.5065	56.8865	57.1876	58.1159	58.4107	59.6213	59.7719	62.4566	65.8400
Input Assay Conventional Results		SulfurByWt (%)	1.120													
🔺 🗹 HTLBiocrude		KinematicViscosity (cSt)														
Input Assay		ParaffinsByVol (%)														
Conventional Results		ntional Results														
A Ssay from Lights	nve	OletinsByVol (%)														
Input Assay		AromByVol (%)														
Conventional Results		PourPoint (F)														
 Assay from LIQ Assay from HTRProd 		FreezePoint (F)														
Assay from Reflux																
Assay from To Condenser		CloudPoint (F)														
Assay from Boilup		SmokePt (ft)														
🕨 🗹 Assay from To Reboiler		NitrogenByWt (%)	4.900													
Assay from Lights - 1		VanadiumByWt (%)														
 Assay from Liq300 Assay from HTRProd - 1 		ConradsonCarbonByWt														
Assay from To Condenser		RONClear														
👂 🗹 Assay from To Reboiler - 1		MONClear														
Reactions		+														
Component Maps																
📷 Coll 2 - Map Default																

Add the oxygenated test components listed below

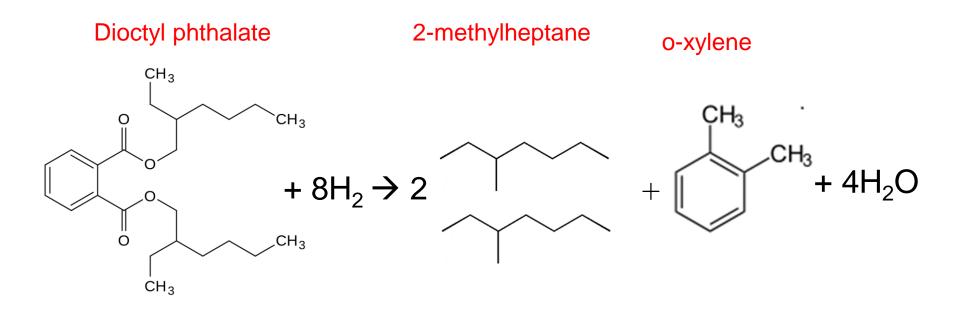
- Make sure the NIST databases are listed in the Enterprise Database tab of the Components List Window
- Use "Find" not "Search" to add components
- Select the component immediately above where you want the new component to go in the list before adding a new component. HYSYS will not let you reorder the components

Oxygenates & Products Used in the Simulation

- Compounds from Aspen Properties & NIST Databanks
 - Methyl-Ethyl-Ketone
 - Cyclopentanone
 - Cyclopentane
 - Benzyl-Ethyl-Ether
 - Ethylbenzene
 - P-Tert-Amylphenol
 - Tert-Pentylcyclohexane
 - Benzophenone
 - Benzylcyclohexane
 - P-Cumylphenol
 - 2-Phenyl-2-Cyclohexylpropane
 - Dioctyl-Phthalate
 - 3-Methylheptane
 - O-Xylene

NIST Databases from component list tab

All Items Selected Henry Comps Component Groups Enterprise Databases Component Lists Installed Databanks Component List - 1 Installed Databanks Fluid Packages Apv88_AQUEOUS HCRSRK Apv88_AQUEOUS Apv88_ASPEN-BM Apv88_ASPEN-BM APv88_AQUEOUS Apv88_ASPEN-BM Apv8_ASPEN-BM Apv88_ASPEN-BM Apv8_ASPEN-BM Apv88_ASPEN-BM Apv8_ASPEN-BM Apv88_ASPEN-BM Apv8_ASPEN-BM Apv88_ASPEN-BM Apv8_ASPEN-BM Apv88_ASPEN-BM Apv8_ASPEN-BM Apv88_ASPEN-BM Apv8_BASPEN-BM Apv88_ASPEN-EOS NSTV88_NIST-RC Apv88_ASPEN-EOS Apv8_ASPEN-BM Apv88_ASPEN-EOS Apv8_ASPEN-BM Apv88_ASPEN-EOS Apv8_ASPEN-BM Apv88_ASPEN-EOS Apv8_ASPEN-BM Apv88_ASPEN-EOS Apv8_ASPEN-BM Apv88_ASPEN-EOS Apv8_ASPEN-EOS NIST Apv8_ASPEN-EOS NIST Assay from HBF1 Apv88_EINRTL-IG Apv88_EINRTL-IG Apv88_HINTLATO Apv88_HINTLATO Apv88_HINTLATO Apv88_HINTLATO <th>Properties <</th> <th>HTLBiocrude - Input Assay × HTLBiocrude - Conventional Results × HTLBiocrude - Summary ×</th>	Properties <	HTLBiocrude - Input Assay × HTLBiocrude - Conventional Results × HTLBiocrude - Summary ×
 Component List - 1 Component List - 2 Fluid Packages Basis-1 HCRSRK HCRSRK HCRSRK HTLBiocrude HTLBiocrude Assay from HBF1 Assay from Lights Assay from HRProd Assay from Reflux Assay from Reflux Assay from Reflux Assay from To Condenser Assay from To Condenser Assay from To Reboiler Assay from Lights - 1 	All Items 🔹	Selected Henry Comps Component Groups Enterprise Databases
 Assay from HTRProd - 1 Assay from To Condenser Assay from To Reboiler - 1 Reactions Component Maps 	 Component Lists Component List - 1 Component List - 2 Fluid Packages Basis-1 HCRSRK Petroleum Assays Arabian Light-2012 Arabian Light-2012 Arabian Light-2012 Arsay from HBF1 Assay from Lights Assay from LIQ Assay from Reflux Assay from Reflux Assay from To Condenser Assay from Lights - 1 Assay from Lights - 1 Assay from HTRProd - 1 Assay from To Condenser Assay from To Condenser Assay from Lights - 1 Assay from To Reboiler Assay from To Condenser Assay from To Reboiler Assay from To Condenser Assay from To Reboiler - 1 Assay from To Condenser 	Aspen Properties Database Setup Installed Databanks APV88.AQUEOUS APV88.ASPEN-BM APV88.ASPEN-BM APV88.ASPEN-BM APV88.BIODIESEL APV88.ENOTOIESEL APV88.ENRTL-IG APV88.ENRTL-IG APV88.ENRTL-RK APV88.



Adding p-tert-amylphenol to component list

Properties <	HTLBiocrude - Input Assay $ imes$	HTLBiocrude - Convention	nal Results $ imes$ \cap HTLBi	iocrude - Summary $ imes$ \cap Com	nponent List - 2 × Component List - 1 × +
All Items 🔹	Selected Henry Comps Co	mponent Groups Enterpris	e Databases		
🔺 🔯 Component Lists					
Component List - 1	Source Databank: Aspen Pro	perties		Use	Select: Components - Don't Us
Component List - 2				026	
Fluid Packages Basis-1	Component	Туре	Group	A	Search:
Basis-1	13-Butadiene	Pure Component			
4 🔯 Petroleum Assays	n-Butane	Pure Component			
👂 📈 Arabian Light-2012	cis2-Butene	Pure Component			💽 Find Compounds
 HTLBiocrude Assay from HBF1 	tr2-Butene	Pure Component		•	
Assay from Lights	i-Pentane	Pure Component	[Find	Compounds
Assay from LIQ	1-Pentene	Pure Component			Search criteria
Assay from HTRProd	2M-1-butene	Pure Component			Compound name or alias constrained a tot any lobored
Assay from Reflux					New search
 Assay from To Condenser Assay from Boilup 	n-Pentane	Pure Component			C equals
Assay from Bollup Assay from To Reboiler	Methyl-Ethyl-Ketone	Pure Component		≡ Remove	Compound class : All
👌 🗹 Assay from Lights - 1	Cyclopentanone	Pure Component			MW - From To
👂 🗹 Assay from Liq300	Cyclopentane	Pure Component			TB V From To K V
 Assay from HTRProd - 1 Assay from To Condenser 	Benzyl-Ethyl-Ether	Pure Component			
Assay from To Condenser	Ethylbenzene	Pure Component			
Reactions	P-Tert-Amylphenol	Pure Component			Compounds found matching the specified criteria: 1
Component Maps	Tert-Pentylcyclohexane	Pure Component			Compound na Alias Alternate name CAS Databank Compound class M
📷 User Properties	Benzophenone	Pure Component			P-TERT-AMYL C11 ptert-AMYLP 80-4 APV88.PU AROMATIC-A 16
	Benzylcyclohexane	Pure Component			
	P-Cumylphenol	Pure Component			
	2-Phenyl-2-Cyclohexylp	Pure Component			
	Dioctyl-Phthalate	Pure Component			
	3-Methylheptane	Pure Component			Add selected compounds
	O-Xylene	Pure Component			
	H2O	Pure Component			
	36-40_1*	User Defined Hypothe	HypoGroup3		Close
	40-50_1*	User Defined Hypothe	HypoGroup3		
	50-60_1*	User Defined Hypothe	HypoGroup3		A.
< <u>III</u> >	60-70_1*	User Defined Hypothe	HypoGroup3		
Z Properties	70-80 1*	User Defined Hypothe	HypoGroup3		

Oxygenate Hydrotreating

Build Reaction Set in Property Environment

- For this case 7 reactions
 - 1. Methyl-Ethyl-Ketone + 2 $H_2 \rightarrow$ n-Butane + H_2O
 - 2. Cyclopentanone + 2 $H_2 \rightarrow$ Cyclopentane + H_2O
 - 3. Benzyl-ethyl-ether + 2 H₂ \rightarrow Ethylbenzene + methane + 2 H₂O
 - 4. P-Tert-Amylphenol + 4 $H_2 \rightarrow$ Tert-Pentylcyclohexane + H_2O
 - 5. Benzophenone + 5 $H_2 \rightarrow$ Benzylcyclohexane + H_2O
 - 6. P-Cumylphenol + 4 $H_2 \rightarrow$ 2-Phenyl-2-Cyclohexylpropane + H_2O
 - 7. Dioctyl-Phthalate + 8 H₂ \rightarrow 2 3-Methylheptane + O-Xylene + H₂O
- Conversion reactions for this case
 - Assume 90% conversion
 - Reaction kinetics can be added when known

Hydrotreating System

- Reference: PETROLEUM REFINING Technology and Economics, Fifth Edition; James H. Gary, Glenn E. Handwerk, Mark J. Kaiser; CRC Press © 2007
 - "Most hydrotreating reactions are carried out below 800° F (427° C) to minimize cracking, and the feed is usually heated to between 500 and 800° F (260 and 427° C). The oil feed combined with the hydrogen-rich gas enters the top of the fixed-bed reactor. In the presence of the metal-oxide catalyst, the hydrogen reacts with the oil to produce hydrogen sulfide, ammonia, saturated hydrocarbons, and free metals.
 - The metals remain on the surface of the catalyst, and the other products leave the reactor with the oil-hydrogen stream. The reactor effluent is cooled before separating the oil from the hydrogen-rich gas. The oil is stripped of any remaining hydrogen sulfide and light ends (i.e. water) in a stripper. The gas may be treated to remove hydrogen sulfide and ammonia, then recycled to the reactor."



Hydrotreater Reaction Conditions from Handwerk et al. 2007 Reference:

	Reference	Flowsheet	
Temperature	520-800	750	°F
Pressure	100-3000	1,500	psig
Reactor H2 Feed	2,000	1,913	scf/bbl
H2 Consumption	200-800	553	scf/bbl

HYSYS Simulation Flowsheet

