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including reductions in feedstock production and higher prices for agricultural
commodities and biofuels. We also use a risk management framework developed by the
Intergovernmental Panel on Climate Change to review current understanding regarding
climate-related hazards, exposure, and vulnerability of the bioenergy supply chain with
a particular emphasis on the growing importance of lignocellulosic feedstocks to future
bioenergy development. A number of climate-related hazards are projected to become
more severe in future decades, and future growth of bioenergy feedstocks is likely to occur
disproportionately in regions preferentially exposed to such hazards. However, strategies
and opportunities are available across the supply chain to enhance coping and adaptive
capacity in response to this risk. In particular, the implications of climate change will be
influenced by the expansion of cellulosic feedstocks, particularly perennial grasses and
woody biomass. In addition, advancements in feedstock development, logistics, and
extension provide opportunities to support the sustainable development of a robust U.S.
bioenergy industry as part of a holistic energy and environmental policy. However, given
the nascent state of the cellulosic biofuels industry, careful attention should be given to
managing climate risk over both short- and long-time scales.
Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

The development and use of biofuels as an energy source has increased rapidly in recent years, both in the United States
and internationally. Estimates from the energy industry indicate that global use of biofuels increased by a factor of five from
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2001 to 2011 (BP, 2012). Over that same time period, the United States emerged as the single largest national producer of
biofuels, accounting for 48% of global production. The growth in biofuels has been driven by two energy-related policy chal-
lenges. First, biofuel development has been pursued as means of reducing environmental externalities of traditional fossil
fuels. Ethanol was adopted as a fuel additive under the U.S. Clean Air Act Amendments (U.S. Environmental Protection
Agency, 2012; USEPA, 2012) and the Alternative Motor Vehicle Fuels Act (USGPO, 1988) as a means of reducing particulate
air pollution from transportation. Increasing awareness of climate change as another externality of energy use has provided
additional incentives to the use of biofuels in order to offset carbon emissions from traditional fossil fuels. Second, and more
recently, a growing national emphasis on energy security has been a key driving force for domestic biofuel production. While
almost all the 57 billion liters of U.S. ethanol production in 2012 was derived from corn, policies are designed to foster com-
mercialization of biofuels from non-food crops, specifically lignocellulosic biomass. For example, the Energy Policy Act of
2005 (USGPO, 2005) and the Energy Independence and Security Act (EISA) of 2007 (USGPO, 2007) substantially increased
the targets for ethanol production, setting a production goal of 136 billion liters of cellulosic biofuels by 2022 (U.S.
Environmental Protection Agency, 2005, 2007).

While bioenergy, including biofuels and biopower, has received significant attention in the literature as a technology for
offsetting future greenhouse gas emissions from energy (Adler et al., 2007; Campbell et al., 2008; Field et al., 2008; Schneider
and McCarl, 2003), the potential vulnerability of bioenergy production to extreme weather events, climate variability, cli-
mate change, and overall climate risk! has received comparatively little (de Lucena et al., 2009; Dominguez-Faus et al.,
2013; Haberl et al., 2011; Poudel et al., 2011; Schroter et al., 2005; Stone et al., 2010; Tuck et al., 2006; Wilbanks et al.,
2012). Recent assessments of the implications of climate change for U.S. energy systems, for example, acknowledge the poten-
tial climate sensitivity of bioenergy (CCSP, 2007; Wilbanks et al., 2012), yet contain little discussion of the timing and magni-
tude of future impacts for different bioenergy resources. As with agricultural and forestry production, bioenergy is highly
exposed and sensitive to weather and climate (Wilbanks et al., 2012), and thus may be more vulnerable than other energy
sources. For example, Eaves and Eaves (2007) found that the price volatility of grain ethanol is higher than that of gasoline
imports due to the impacts of weather. Given predictions that extreme weather events will increase in frequency, duration,
and/or intensity (IPCC, 2012), climate risk to biofuels derived from agricultural and forest enterprises would also be expected
to increase. The current policy emphasis on cellulosic bioenergy production, as well as the important role of bioenergy in
enhancing energy security and reducing climate risk, suggests greater attention to the implications of climate risk for the indus-
try is warranted. As a case-in-point, the U.S. drought experienced during 2012, and its impacts on the agricultural sector,
represents a ‘teachable moment’ for the biofuels industry. As an estimated 1 in 30 years event, it was the first significant,
national-scale drought event to coincide with the emergence of the U.S. bioenergy industry. The consequences revealed poten-
tial vulnerabilities of the bioenergy supply chain, potential trade-offs among different technologies and feedstocks, as well as
opportunities for future risk management. With projected demand of approximately 225 million dry Mg of biomass needed
by 2022 to meet EISA targets (Langholtz et al., 2012) and the likely continued expansion of cellulosic bioenergy in future
decades, robust climate risk management in the bioenergy industry will be an important component of its evolution and its
contributions to meeting U.S. energy security and environmental goals.

Here, we review climate risk to the U.S. bioenergy industry, with a particular emphasis on cellulosic biofuels, which are
currently an arena of intensive research and development. We frame our review around a risk-management framework to
identify direct and indirect climate hazards, assess exposure, and explore key vulnerabilities, with an emphasis on learning
from recent experience with extreme weather events such as the 2012 drought. We also identify risk management strategies
for the bioenergy supply chain that may be starting points for adaptation efforts as well as key knowledge gaps that must be
addressed through future research and development efforts toward a climate-resilient cellulosic bioenergy supply chain.

Framing climate risk to the bioenergy supply chain

The bioenergy supply chain is comprised of a broad range of assets and infrastructure, both public and private, which
have differential vulnerabilities to climate risk (Fig. 1). While much of the focus of biofuel analysis targets the land used
to produce biofuels, the industry is dependent upon a more elaborate supply chain that is in some ways analogous to that
of other forms of energy (Parish et al., 2013). The foundation for the bioenergy supply chain is the production of bioenergy
feedstocks on farms, forestlands, or marginal lands. For cellulosic-based fuels, feedstocks could include crop residues such as
corn stover (the most abundant U.S. cellulosic feedstock at present) (Kadam and McMillan, 2003), direct production of
energy crops including annual (e.g., sorghum) or perennial (e.g. switchgrass and Miscanthus) herbaceous crop, as well as
woody biomass crops (McKendry, 2002). Once harvested, these feedstocks are stored onsite or transported to biorefineries
or long-term storage facilities. Biorefineries may store feedstocks for short periods of time and facilitate additional pre-
processing before biomass enters the biochemical or thermochemical refining process. Depending on the refinery, the
products of refining include liquid fuels such as ethanol as well as syngas, which can be converted to a range of products.

T We use the term “extreme weather event” to indicate a singular occurrence such as a hurricane or storm, “climate variability” to specify variation from
expected climate averages, and “climate change” in the conventional sense indicating long-term (multi-decade) trends. In this paper we use the term “climate
risk” to mean risk associated with extreme weather events, climate variability, and/or climate change, and we use the specific terms where the distinctions are
relevant.
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Fig. 1. Examples of conventional biofuel feedstock supply chain.

Refining also can be coupled directly to the generation of heat or electricity (biopower), or refined products (e.g. chemicals,
sugars, and fibers) can be delivered to other consumers and end users.

To explore potential climate risks to the bioenergy supply chain, we adapted a risk framework published under the
auspices of the Intergovernmental Panel on Climate Change (Lavell et al., 2012). That framework presents risk as function
of weather and climate events (or hazards), vulnerability, and exposure (Fig. 2). The weather and climate events are a
product of both natural variability and anthropogenic climate change. Meanwhile, the manner in which the industry evolves,
through innovation and upscaling, will influence the exposure of different supply chain elements to climate variability and
change as well as the capacity of different actors to cope with stress and exploit opportunities for adaptation. The following
sections explore each of these aspects of climate risk, from exposure to climate and weather hazards, to the vulnerability of
different elements of the supply chain. The various options and strategies available to different actors to manage risks to the
supply chain are discussed as well as key knowledge gaps that will need to be addressed to improve future climate risk
management and adaptation.
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Fig. 2. Bioenergy supply chain risk management framework (IPCC, 2012).
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Exposure of cellulosic biofuels to direct and indirect climate-related hazards

To assess the exposure of the cellulosic bioenergy supply chain to climate-related hazards, consideration must be given to
two general categories of hazards. First, the supply chain may be exposed directly to hazards such as extremes of weather
and climate that result in direct loss and damage to supply chain elements. Second, the supply chain may be exposed indi-
rectly to non-climatic biological and ecological hazards that are nevertheless influenced by climate such as pests and disease.
Each of these categories is discussed further below.

Direct climate hazards

Extreme weather events represent significant natural hazards to the bioenergy supply chain. First and foremost, such
extreme events pose a significant risk to agricultural and forest lands, which ultimately affects biomass for bioenergy. For
example, over 90% of crop loss indemnity payments between 1989 and 2012 were attributed to extreme weather events,
equivalent to over $80 billion (Fig. 3; RMA, 2013). Drought alone is by far the single-biggest climate-related threat to agri-
culture, accounting for 40% of indemnity payments. Such impacts are a function of the location of significant agricultural
enterprises on hazardous landscapes. To explore the exposure of current bioenergy feedstocks as well as future feedstocks
to climate extremes, we developed a series of hazard indices for the United States based on historical event information from
1950 to 2011 (see supplementary data). These indices included drought (as measured by the Palmer Drought Severity Index
(PDSI), hail, wind, tornadoes, tropical cyclones, and wildfire. Indices were developed by calculating the density of events on
the U.S. landscape (weighted by event intensity) based upon the location of historical events. Data on historical events were
obtained from the National Climatic Data Center (PDSI; NCDC, 2013a), the National Weather Services’ Storm Prediction
Center (hail, wind, tornadoes, tropical cyclones; NOAA, 2013), and the U.S. Geologic Survey (wildfire; USGS, 2013). Hazard
indices were aggregated to the county level and used to identify exposure ‘hotspots’ for different types of extreme weather
events (Fig. 3), based upon observations over the past few decades. While these hazard indices do not represent the entirety
of potential climate-related threats to agricultural and forestland systems, they do span the majority of loss events reflected
by insurance indemnity payments (Fig. 3). Meanwhile, indices of climatic extremes do not account for future changes in the
frequency, intensity, or duration of extreme events, due to persistent challenges in modeling such extremes and the
relatively near-term outlook of available biomass projections.

While cellulosic biomass remains an emergent feedstock for bioenergy, its contribution to overall U.S. bioenergy produc-
tion is projected to grow rapidly over the next few decades in order to meet production targets set by EISA. Hence, to assess
cellulosic feedstock exposure to such hazards, we utilized current county-level estimates and future projections of cellulosic
feedstock harvests from the POLYSYS bioenergy modeling framework (De La Torre Ugarte and Ray, 2000) and U.S. Depart-
ment of Energy’s Billion-Ton Update (USDOE, 2011). These projections indicate traditional agricultural areas of the United
States such as the Great Plains and the upper-Mid West will be key sources of bioenergy feedstocks over the first half of

Other/Unspecified

Wind 8%

Disease
2%

Drought
42%

Rain/Moisture
25%

Fig. 3. Attribution of agriculture indemnity payments (1989-2012) to different hazards (RMA, 2013).
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the 21st century (Fig. 4). This geographic pattern is largely driven by residues of traditional agricultural crops such as corn,
which is particularly prevalent in the upper-Mid West, while other crops (e.g., annual energy crops, perennial grasses) are
largely associated with the Great Plains states.

Overlaying the hazard ‘hot spots’ with the projected distribution of cellulosic bioenergy indicates that the nation’s current
and projected area supporting cellulosic feedstocks will be exposed to climate risk (Figs. 4 and 5). Baseline estimates of
cellulosic feedstocks indicate that the approximately 59 million acres of current production is concentrated in areas that
are disproportionately exposed to certain types of climate extremes including drought, hail, wind, and tornadoes (Fig. 5).
By 2030, an additional 33 million acres are projected to be harvested, with much of that production also occurring dispro-
portionately in regions that have historically been particularly exposed to these same four hazards. As a consequence, by
2030, the bulk of the harvest area will lie in not just one, but multiple ‘hotspots’ for extreme weather events (Figs. 4 and
5). While exposure alone does not necessarily translate into a loss, transient and persistent climate hazards associated with
climate variability and change are important components of the calculus of risk.

In addition to a greater concentration of feedstocks in regions of the United States exposed to weather extremes, evidence
indicates that such extremes have already become more severe (IPCC, 2012; Min et al., 2011; Pall et al., 2011; Sheffield and
Wood, 2008; Van Aalst, 2006) and may continue to do so in coming decades (IPCC, 2012). Although robust understanding of
the future spatial and temporal dynamics of extreme events remains elusive, changes in the dynamics of extremes would
have important implications for exposed biomass (CCSP, 2008a,b; Rosenzweig et al., 2001). Projections of climate change
indicate that rising temperatures in future decades are likely to increase evaporation resulting in more frequent drought
events (CCSP, 2008b; Dai, 2012; Strzepek et al., 2010; Trenberth et al., 2014). These trends hold for more recent results from
the models participating in the IPCC'’s Fifth Assessment Report (AR5) (Dai, 2012; Zhou Tian-Jun, 2013) as well as those of the
previous AR4 (Dai, 2011b; Sheffield and Wood, 2008; Strzepek et al,, 2010; Wehner et al., 2011). Nevertheless, there is
significant debate in the literature regarding the evaluation of drought trends and, in particular, the robustness of different
metrics for undertaking such evaluations (Dai, 2011a; Sheffield et al., 2012; Strzepek et al., 2010; Trenberth et al., 2014; Van
der Schrier et al., 2011; Vicente-Serrano et al., 2011; Zhou Tian-Jun, 2013). Furthermore, details of the projected drought vary
with the emission scenario and the model or models used and there are of course uncertainties surrounding the projections
(Burke and Brown, 2008). There is a tendency for the models to overestimate drought duration, frequency and intensity of
drought when compared to observations of the 20th century, but the trend of increasing drought across the United States
through the 21st century appears robust (CCSP, 2008b). Meanwhile, rainfall is likely to be less frequent, but more intense,
resulting in more rainfall extremes. Some studies have translated such changing precipitation regimes into an increase in
flood risk (Hamlet and Lettenmaier, 2007; Milly et al., 2002), yet national estimates of flood risk for the U.S. at the scale
of agriculture are limited. Wildfires and hurricanes are also projected to become more extreme (Holland, 2012; Knutson
et al., 2010; Spracklen et al., 2009; Webster et al., 2005; Westerling et al., 2006). Although such hazards largely affect areas
around the margins of cellulosic feedstock production, individual enterprises may be exposed. Projections for other types of
hazards that affect U.S. agriculture such as hail are less readily available. Extremes will also affect forestry systems through
changes in disturbance regimes including potential dieback of forest stands (Dale et al., 2001, 2011a,b, 2009; Shugart et al.,
2003). Despite the well-documented hazard posed by climate extremes to agriculture and forestry enterprises, agricultural
models consistently fail to account for the effects of extreme weather events such as hail, floods, or high winds (Archer and
Johnson, 2012; Brown and Rosenberg, 1999; Rotter et al., 2011; Soussana et al., 2010; Tubiello et al., 2007; Zhang et al., 2010)
- a knowledge gap that ultimately affects risk assessment and strategic planning for bioenergy crops as well.

Indirect climate hazards

In addition to direct exposure to climate, cellulosic feedstocks may also be exposed to the indirect effects of climate
change including impacts on weeds, insect pests, and diseases (Royle and Ostry, 1995; Tubiello et al., 2007). McDonald
et al. (2009) observe changes in the competitive advantage between damaging weeds in response to higher temperatures
(Valerio et al., 2011; Ziska, 2001). In addition, increasing atmospheric CO, may alter interactions between plants and insect
herbivores (Stacey and Fellowes, 2002; Zvereva and Kozlov, 2006). Similarly, climate change has been implicated in epidem-
ics of forest pests in the Western United States including bark beetles (Bentz et al., 2010) and the Mountain Pine Beetle
(Aukema et al., 2008; Hicke et al., 2006; Kurz et al., 2008). Exposure to such pests may be exacerbated by monoculture
management conditions that arise in production systems (Tuskan, 1998). While there is significant research and manage-
ment experience associated with the agriculture and forestry industries with respect to weeds, pests, and disease, there
has been limited investigation of potential changes in the spatial distribution and damages associated with such hazards
focused on climate/energy feedstock interactions (Perlack et al., 2005).

Key vulnerabilities of the biofuel supply chain

To assess risk to the bioenergy supply chain, consideration must be given to not just whether elements of the supply chain
are exposed to climate hazards but also the potential vulnerability of those elements that may create conditions that allow
exposure to be translated into harm. As a starting point, we draw on the work of Lynch et al. (2008), O’'Neill and Hulme
(2009), and O'Neill and Nicholson-Cole (2009) regarding the use of iconic extremes as vehicles for understanding
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Fig. 4. Spatial distribution of current (2012) and projected (2030) cellulosic bioenergy feedstock harvests in the continental United States as well as
comparison of projected with historical ‘hotspots’ for extreme weather events. Cellulosic feedstocks include annual energy crops, perennial grasses, woody
biomass, corn stover, wheat residues, and sorghum residues. (A) current harvest and locations of biorefineries. (B-D) Projected harvests and historical hot
spots for extreme weather events (based on observations from 1950 to 2011; see supplementary data for discussion of methods and data sources): (B)
severe drought; (C) hail; (D) wind; (E) tornadoes; (F) wildfire; (G) hurricanes.
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vulnerability and adaptation to climate change. In this context, the drought and its consequences for agriculture and current
bioenergy feedstocks is such an iconic event that can be used to frame vulnerability of the cellulosic bioenergy supply chain
to climate variability and change. Here, we review this event and use it as the basis for the development of a typology of key
vulnerabilities for the supply chain. Each of these vulnerabilities is then discussed further in the broader context of future
climate change and the evolution of cellulosic bioenergy.

Evidence from the 2012 drought

The drought of 2012 was characterized by significant rainfall deficits as well as record high temperatures in many parts of
western, central, and south central United States, particularly during late June and early July (NCDC, 2013b). In contrast, the
western Gulf Coast and Appalachians had normal precipitation (USDA, 2012a,b). By late-2012, the U.S. Department of Agri-
culture had designated 2245 counties in 39 states as disaster areas due to drought, equivalent to 71 percent of the United
States by area (USDA, 2013b). This included many regions that are significant producers of biomass for bioenergy. For many
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areas of the U.S. South, 2012 was the second consecutive year of significant drought (Blunden and Arndt, 2012). These dry
conditions had a significant impact on crop yields and agricultural production, highlighting the potential vulnerability of U.S.
agriculture and, by extension, the bioenergy supply chain to climate risk. At the same time, however, the drought revealed
how extreme conditions force trade-offs among different agricultural enterprises and how deliberate and autonomous
(i.e., market-based) coping mechanisms influence how impacts are distributed.

The impacts of the drought were readily observed as decreases in crop yields and production for much of the central Uni-
ted States (USDA, 2013a), indicating favorable conditions in the Southeast were not sufficient to offset the losses in drought-
affected regions. Including grains, oilseeds, and hay, crop production was down by 7%, yet responses of individual crops
varied significantly. Corn, for example, experienced a 13% decline in yield in 2012 relative to 2011 and a 16% decrease in yield
when compared to the 2001-2012 mean (Fig. 5). This contributed to reductions in corn utilization for both ethanol produc-
tion and other uses ((AFDC, 2013c; EIA, 2012a); Fig. 6). Meanwhile, hay production declined 9% at the national level. These
national-scale impacts mask much more dramatic consequences at the state level (Fig. 5). Overall, grain production declined
by 8%, with feed grains (corn, grain sorghum, barley, and oats) declining 12%, while grain sorghum, barley, and oat produc-
tion all increased relative to the previous year. Wheat production increased 13%. While U.S. soybean production, which
accounts for approximately 90% of oilseed production (ERS, 2013c), declined by approximately 3%, production of oilseeds
(e.g., soybeans, canola, cottonseed, peanuts, and sunflowers) overall were up, largely due to significant increases in the area
planted and harvested in 2012 relative to 2011 (USDA, 2013a). In spite of the severity of the drought of 2012, the 7% decline
in crop production in 2012 was surprisingly low. This is due to a range of factors including significant production from irri-
gated land (ranging in 2008 from 4% of wheat production to 92% of rice), winter wheat was grown and harvested before the
drought started, and corn varieties have become better at withstanding drought (Schill, 2012). This highlights the impor-
tance of the timing of extreme events and land management practices with respect to the influence of drought on produc-
tion. The drought of 2012 does not appear to have greatly affected crop production for 2013. There was some concern for the
winter wheat harvest in Spring/Summer 2013, but based on planted area, yield of the winter wheat crop harvested in 2013 is
forecast to decline by 10% relative to 2012, and is 2% higher than the average yield from 2001 through 2011. Overall crop
production (grains and oilseeds) for 2013, as of June 2013, is forecast to be the highest recorded.

The decline in crop production resulted in an increase in crop prices. Prices received by farmers for 2012 crops (based on
prices through June 2012 and estimated for the rest of the marketing year) of corn, winter wheat, and soybeans were up by
12%, 14%, and 15%, respectively, while prices for hay were down about 2%, compared to the 2011 marketing year. The price
for corn, in particular was the highest since the introduction of ethanol as a fuel additive in the late 1980s (Fig. 6). As of June
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Fig. 6. Historical trends in corn production and ethanol prices were obtained from the Alternative Fuels Data Center (AFDC, 2013a; AFDC2013c). Data on
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the conversions for inflation-adjusted corn prices reported in (AFDC, 2013b) using the consumer price index.
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2013, prices were up for all farm products by 12% from 2011 (calendar year) but up by 42% relative to 2010. These higher
prices had downstream impacts on consumers. For example, the crop part of the prices received by farmers was up 14% over
2011 and 51% over 2010. Yet, farm-level costs made up only 16% of consumer food prices in 2008 (Canning, 2011). Hence, the
Economic Research Service of the US Department of Agriculture estimated that consumer food prices increased 2.6% in 2012
and are forecast to increase 2.5-3.5% in 2013 (ERS, 2013a). The impact on meat prices was expected to be modest in the short
term, because meat producers liquidate some of their animals in response to higher prices and the unavailability of feed
(e.g., pastures producing minimal feed). One response of the U.S. government to the 2012 drought was to allow grazing
on 1.5 million ha of Conservation Reserve Program (CRP) land, which increased hay equivalent supplies. Livestock and prod-
uct prices were up 11% over 2011 as of June 2013. Larger impacts can be expected over the long-term. Meanwhile, the high
price for corn contributed to ethanol reaching its highest price in over a decade, and was more than twice the price observed
in 2000 (Fig. 6). This economic disruption was attributed in part to competition for corn between fuels and food/feed/fiber
(Babcock, 2012; Larson et al., 2010).

While crop production was down in 2012, farmer revenues in the United States for crops (in the aggregate) actually
increased by 3% because prices increased more than production decreased (see supplementary data). This is an indication
that crop demand is inelastic (i.e. the percent increase in price is more than the percent decrease in quantity). Hence, finan-
cial impacts to producers at the national level were offset by the market, yet this resulted in adverse impacts on consumers
forced to pay higher prices. This affected the profitability of ethanol production as well because the spread between ethanol
and corn prices narrowed, shrinking profit margins and, ultimately, ethanol production (EIA, 2012b). Furthermore, these
national impacts mask regional disparities, which become evident by examining crop revenues for five states: Indiana, Min-
nesota, Mississippi, Missouri, and Pennsylvania (see supplementary data). Indiana and Missouri were hard hit by the drought
of 2012, while the other states were not. Revenue decreased in Indiana and Missouri by 8%, while revenue increased by about
20-25% in Mississippi and Pennsylvania and 8% in Minnesota (Table 1). However, profit did not increase proportionally with
revenues, because production costs increased as well. Therefore, overall crop profit in 2012 was estimated to be down only
4% (ERS, 2013b).

When experience with the 2012 drought is viewed through the lens of bioenergy supply chain, it suggests that bioenergy
systems have three critical areas of vulnerability, which are applicable across climate-related impacts in general:

e Vulnerability of cellulosic feedstock production and supply - Reductions in the production and subsequent supply of
feedstocks due to adverse impacts of extreme weather and climate change.

e Vulnerability of biofuel supply chain infrastructure — Disruption of biorefining operations and subsequent supply of
biofuels due to reduced availability of feedstocks, interruption of transportation networks, and/or direct damage to
biorefineries and supporting utilities and resources (e.g., electricity, water).

e Vulnerability to market prices — Volatility in market prices for bioenergy feedstocks and refined products that affects
producer and/or consumer welfare and the competitiveness of feedstock production relative to conventional crops.

Each of these vulnerabilities is discussed further below, with particular emphasis on the level of understanding and
current knowledge gaps relevant to risk management.

Vulnerability of cellulosic feedstock production and supply

As evidenced by the 2012 drought, the first-order consequences of climate risk will manifest as impacts on the production
of cellulosic feedstocks (Porter and Semenov, 2005). The vulnerability of specific cellulosic feedstocks is contingent upon a
range of factors that span local growing conditions (e.g., weather, climate and soil), physiological characteristics of individual
feedstocks (Barney et al., 2009; Erickson et al., 2008; Oosterhuis et al., 1990), and the management practices of producers
(Table 2). Much of current understanding regarding feedstock vulnerability is based on drought. Among annual grasses,
for example, biomass sorghum is considered to be an attractive energy crop candidate because of its high yield potential,
rapid maturation, high water-use efficiency, and drought tolerance (Rooney et al., 2007; Turhollow et al., 2010). In contrast,
other annual grasses such as corn are sensitive to moisture stress, regardless of the growth stage (Bai et al., 2006; Boyer,

Table 1
Crop revenue for 2012 among select drought-affected states as compared with revenue for 2011 (see supplementary data). Major crops include corn, sorghum,
barley, oats, wheat, rice, soybeans, and upland cotton.

State Crop revenue for major crops (millions of US$) 2012 as a percentage of 2011 (%)
2011 2012
Indiana 8828 8103 91.8
Minnesota 13,294 14,330 107.8
Mississippi 2473 3010 121.7
Missouri 5895 5477 92.4
Pennsylvania 1610 1999 124.1
United States 167,224 172,106 1.0
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1970; Dominguez-Faus et al., 2013; Nagy et al., 1995). However, while current ethanol production from corn is dependent on
corn grain, cellulosic biofuels utilize corn residues for which the implications of drought can be quite different. A failed grain
harvest may leave significant residue biomass that can be exploited for bioenergy. Producers growing conventional crops
such as corn can hedge against uncertainty and/or adversity by exploiting both grain and biomass residue markets, and
annual planting provides flexibility to producers in terms of being able to switch crops over relatively short time scales in
response to changing environmental conditions. Corn is also routinely covered under crop insurance schemes.

Perennial herbaceous plants, such as switchgrass, which has been identified by the U.S. Department of Energy as a
“model” high-potential energy crop (McLaughlin and Kszos, 2005; Wright and Turhollow, 2010), and Miscanthus x giganteus
are also vulnerable to drought (Barney et al., 2009). Yet, various characteristics of perinneals may offer some competitive
advantage under drought stress, one of which is root depth. As observed in the 2012 drought, for example, hay (a perinneal
grass) production declined less than corn (an annual grass) (Fig. 7). Among dedicated bioenergy crops, Switchgrass has a
relatively extensive and evenly distributed deep root system (>3 m in depth), compared with Miscanthus for which 90%
of root biomass occurs in the top 0.35 m soil (Monti and Zatta, 2009). This enables switchgrass to capture water from deep
soil, especially during dry periods (Eggemeyer et al., 2009; Monti and Zatta, 2009). Switchgrass has the highest root/shoot
ratio across C4 grasses, which is a common characteristic among drought tolerant plants (Xu et al., 2006). Brown et al.
(2000) projected switchgrass yields in Kansas would benefit from future higher temperatures and CO, concentrations, in
contrast with grain crops that would face increasing stress. Woody biomass conveys a particular advantage in that it can
continue to be stored in situ and used as a feedstock, even in the event of the death of the plant. Disturbance of forestlands
due to extreme conditions such as drought or storms (e.g., ‘wind wood’), for example, may result in dieback of trees (Shugart
et al., 2003), generating significant woody biomass that could be harvested for bioenergy (Curry et al., 2008; Escobedo et al.,
2009; Staudhammer et al., 2011). Such characteristics suggest potential advantages of cellulosic feedstocks in general, and
switchgrass as well as woody biomass in particular, in terms of resilience to climate risk. Furthermore, once planted, peren-
nial grasses and woody biomass don’t require annual replanting and there is flexibility in terms of when they are harvested
(Hall and House, 1994). This insulates these feedstocks from the vulnerabilities associated with annual planting and harvest-
ing windows, although it creates some degree of investment lock-in for producers, which discourages switching of crops
from one year to the next. In addition, perennial herbaceous grasses and woody biomass may be exposed to weather
variability over a longer time period, which may increase its likelihood of experiencing an adverse weather event over its
production cycle.

Less information is available regarding absolute and relative vulnerabilities of different feedstocks to other climate
hazards. Excess moisture and flooding has been shown to adversely affect a range of current biofuel feedstocks including

Table 2
Characteristics of cellulosic bioenergy feedstocks that influence their vulnerability or resilience to climate variability and change.
Characteristics Example Advantages Vulnerabilities
feedstocks
Resilience to e Varies o Enables plants to cope with climate variability and e None
extreme depending on change
conditions crop breeding
efforts
Resistance to e Varies e Enables plants to cope with disease and pests along e None
disease and depending on and/or in combination with climate variability and
pests crop breeding change
efforts
Short (1 year) e Sorghum e Enables production during relatively short windows e Associated with shallow root depths and less
maturation e Corn residue of favorable weather conditions able to cope with prolonged adverse
time e Energy cane e Enables relatively rapid switching to alternative conditions

crops as conditions change

Perennial growth e Woody o Enables plants to become established (e.g., deep e Constrains flexibility in crop switching
biomass root system) and enhances drought tolerance
e Switchgrass
e Energy cane
e Miscanthus
Infrequent e Miscanthus e Once established, does not require annual replant- e Establishment period may be extended
planting, e Switchgrass ing, which is prone to climate risk. Enables flexibil- (>2 years) depending on climate variability.
flexible e Woody ity around variable weather conditions Variable time to achieve expected yields
harvest biomass
window

Flexibility in end Corn  (grain Enables crop biomass to enter different markets and Reduces incentives for exploitation of other
use and residue) therefore hedge against uncertainty energy crops

e Woody e Provides revenue security for producers e Reduces security of biomass supply
biomass
Insurability e Corn o Provides revenue security for producers e Reduces incentives for exploitation of other

energy crops
Moral hazard
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Fig. 7. Corn and hay yields among select U.S. states in 2012 relative to the 10-years mean (2001-2012). Source: data from annual U.S. Department of
Agriculture Crop Production Summary reports (USDA, 2013a).

soybeans (Oosterhuis et al., 1990), corn (Subbaiah and Sachs, 2009; Yan et al., 1996; Yordanova and Popova, 2007; Zaidi et al.,
2004); and sugarcane (Gilbert et al., 2008; Viator et al., 2012). Naidu and Long (2004); Casler et al. (2007 and 2004)
investigate thermal tolerances of Miscanthus and switchgrass; and while insurance indemnities and the literature identify
hail as a significant agricultural hazard (Fig. 3; Rosenzweig et al., 2002), there is little evidence to document differential
vulnerability among potential feedstocks. Furthermore, vulnerability to extreme weather conditions may decline over time.
Various sources of biomass currently being explored as bioenergy feedstocks have not benefited from decades of genetic
manipulation to develop cultivars more resilient to climate, pests, and disease (JM-F et al., 2007), and thus their long-term
potential for sustainability in the face of climate and weather extremes remains unknown. Hence, there is significant oppor-
tunity for more comprehensive evaluation of the vulnerabilities of different feedstocks and cultivars over different spatial
and temporal contexts.

In addition to the well-documented effects of acute extreme weather events on agricultural systems, climate change can
also have chronic impacts on bioenergy feedstocks through long-term shifts in the suitability of different ecoregions to feed-
stock production (Barney and DiTomaso, 2010; Tuck et al., 2006) and, in particular, through impacts on water availability.
Chiu et al. (2009), for example, estimate that 1 L of ethanol currently requires 248-780 L of irrigation water, although regio-
nal requirements vary with irrigation practice (de Fraiture et al., 2008; NRC, 2008; Pimentel, 2003; Pimentel and Patzek,
2005; Wu et al., 2009). Furthermore, as bioenergy has expanded into new areas that are more dependent upon irrigated
cultivation, the embodied water in ethanol has increased (Chiu et al. (2009)). In fact, current production of biodiesel and eth-
anol from conventional crops is associated with rates of water consumption per megawatt hour that are at least an order of
magnitude higher than other energy systems (USDOE, 2006). Hence, questions have been raised regarding the value of
bioenergy to sustainable energy production (Dominguez-Faus et al., 2009). Given climate change has been identified as a
potential threat to water resource availability to other energy sources (e.g., (Averyt et al., 2011; Cooley et al., 2011; EPRI,
2011)), climate change impacts on water availability may exacerbate the high water demands associated with the
production of bioenergy feedstocks.

For bioenergy supply chains, consideration must be given to not only the yields generated by feedstocks, but also the
efficiency and profitability of biomass harvest and collection operations. The harvesting and transport of biomass incur costs.
For biomass feedstocks, like high-yielding dedicated energy crops, reductions in yield per unit area translates into increased
harvest costs on a per-ton basis (Sokhansanj et al., 2009). If yield impacts become sufficiently large, the harvesting of
biomass may become cost-prohibitive. In addition, such crops tend to be more geographically distributed than traditional
commodity crops making transportation costs to biorefineries a larger component of their price. Reduced productivity
and/or availability of these crops that expands the supply area only exacerbates transportation costs. These risks can be
mitigated to some extent through adaptive agronomic strategies (e.g. fertilizer and pest management regimes).
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Vulnerability of bioenergy supply chain infrastructure

Biorefining infrastructure and the services and natural resources that support those refineries are an important consid-
eration with respect to climate vulnerability. Such vulnerabilities are likely to become increasingly important as the industry
expands in the future. Insights regarding infrastructure vulnerability can be acquired from the literature, based on what's
been reported for other renewable energies (e.g., solar, wind, hydropower) as well as conventional fossil fuel energy sources
(CCSP, 2007; Wilbanks et al., 2012). Such infrastructure can be adversely affected by climate change directly, particularly
through changes in extreme events that pose direct hazards to infrastructure. For example, flooding and wind damage
may disrupt operations at biorefineries by damaging infrastructure. Biorefineries can also be affected indirectly. Wilbanks
et al. (2012), for example, note that declines in feedstock production ultimately affect the availability of feedstocks to
biorefineries and subsequent production, although as noted previously, some disturbances can result in generation of
biomass that could be used by biorefineries. In addition, the electricity supply of biorefineries as well as the transportation
of feedstocks to (or products away from) biorefineries can be disrupted by extreme weather events that affect roads, rail,
pipelines, barge traffic, or the energy grid (EIA, 2012b; Wilbanks et al., 2012). Biorefineries, like other conventional energy
infrastructure, are also dependent upon significant inputs of water. Water use averages 22.7 and 7.6 liters of water per liter
of ethanol for biochemical and thermochemical conversion processes, respectively (Foust et al., 2009), although these values
are small relative to the use of water for irrigation (see Vulnerability of bioenergy supply chain infrastructure). Increasing
concerns about water availability for future energy generally, and the water needs of bioenergy specifically, suggest water
availability over both the short term (i.e., seasonal to inter-annual) and long term (i.e., multi-decadal) as a key consideration
for future investments in bioenergy infrastructure.

Vulnerability to market prices

The sustainability of the biofuels supply chain is dependent upon a range of market forces and incentives, with climate
risk representing a potential uncertainty in the stability and predictability of markets. Declines in feedstock production,
whether transient or persistent, would lead to constraints on the supply of bioenergy feedstocks to the supply chain resulting
in higher feedstock prices. As demonstrated by the 2012 drought, those higher prices can act to maintain producer revenue
and profits despite production impacts. Autonomous responses of the market can therefore assist producers in coping with
adverse conditions. However, impacts for individual producers in particularly hard-hit regions may be greater, particularly
for those growing dedicated bioenergy crops for which insurance is unavailable. For consumers of feedstocks, such as
biorefineries, however, those higher prices result in higher input costs and can erode the profitability of such enterprises.
These costs may be exacerbated if a biorefinery must exploit feedstocks over a larger area (with higher transportation costs)
to compensate for reductions in local production (see Vulnerability of bioenergy supply chain infrastructure). The biorefinery
must, therefore, recoup those losses in the form of higher prices for refined products, which ultimately has adverse impacts
on end use consumer welfare.

Future expansion of bioenergy would potentially influence the market impacts of climate variability and change on the
bioenergy supply chain. Much of the market impacts observed to date are a function of a) the lack of diversity in ethanol
feedstocks, which are predominantly derived from corn production and b) competition for corn among multiple end users
(fuel, feed, and food). For example, corn production has expanded since the introduction of ethanol into liquid fuels (Fig. 6).
However, as that expansion has been accompanied by a concomitant increase in demand for corn, prices for corn have grown
steadily over the past decade, peaking in 2012 at levels that hadn’t been seen since the introduction of ethanol in the late
1980s (Fig. 6). While a positive development for producers, this adversely affects other elements of the supply chain. Expand-
ing the range of feedstocks that can be utilized for bioenergy can enable both producers and downstream consumers to
hedge against climate and market uncertainties. As mentioned previously (see Vulnerability of cellulosic feedstock produc-
tion and supply), greater use of conventional crop residues may provide producers with a source of revenue even when
grains or oilseed yields are not sufficient for harvest. Greater use of dedicated energy crops can enable producers to exploit
a broader array of landscapes (e.g., marginal agricultural land) and grow feedstocks over different time scales (e.g., perennial
and woody biomass). Meanwhile, downstream consumers could make use of a greater range of biomass resources that
reduces the impacts of price volatility associated with the success and failures of individual feedstocks. Collectively this
could result in a more resilient and competitive marketplace, with ancillary benefits in terms of reducing the adverse exter-
nalities on other agricultural commodities, such as livestock, that have been attributed to the existing corn-based ethanol
bioenergy system. It should be noted, however, that as both food crops as well as biofuels generated from feedstocks are
commodities traded on international markets, domestic prices for food/feed/fiber and biofuel will also be influenced by
the impacts of climate risk on agricultural and forestry systems in other global regions.

Supply chain risk management strategies and opportunities

Given the various challenges that remain with respect to scaling up the cellulosic biofuels industry (Richard, 2010),
opportunities for risk management should be included in its future development. Yet, managing risk involves addressing
complex interactions at the nexus of land, water and energy (Dale et al., 2011b). Spatial and temporal patterns of biomass

Please cite this article in press as: Langholtz, M., et al.. Climate Risk Management (2014), http://dx.doi.org/10.1016/j.crm.2014.05.001



http://dx.doi.org/10.1016/j.crm.2014.05.001

M. Langholtz et al./Climate Risk Management xxx (2014) xXx—xXx 13

production and industry development remain uncertain as do the policy and market environments at regional, national, and
global scales. These uncertainties are exacerbated by those associated with future climate and its influence on extreme
weather events (IPCC, 2012). Multiple assessments, for example, have suggested the potential for increased agricultural
yields in the United States due to climate change and CO,-fertilization (Hatfield et al., 2008). Similar results have been
reported in Europe (Schroter et al, 2005; Tuck et al, 2006). However, such effects are region and crop specific.
Dominguez-Faus et al. (2013), for example, project climate change will lead to declines in U.S. corn production despite
increasing irrigation. Hence, as evidenced by the drought of 2012 and the billions of dollars of indemnity payments made
to farmers in recent decades, yield impacts during extreme weather events are an inherent vulnerability of biomass-based
industries. Reduced yields and crop losses due to drought or flooding, competition with other industries (e.g., livestock feed,
fiber, and biopower), and changes in material quality are climate-associated risks assumed by stakeholders along the biofuel
supply chain from biomass production, to biofuel conversion, to fuel use. With reduced biomass availability, operations
along the supply chain are subject to low utilization of resources (facilities, equipment, labor, etc.) and inefficiencies asso-
ciated with substituting biomass sources. These factors can significantly increase the price and quality of products, which
can influence the competitive position of an emerging industry. Success of a commercial biofuel industry will require stra-
tegic planning on behalf of stakeholders in order to optimize potential returns, while managing climate risk (Table 3).

Feedstock production and supply

Cellulosic feedstock producers have flexibility to respond to changes in local weather and climate by employing strategies
such as irrigation, selection of drought-tolerant crop varieties, diversifying production, and the use of alternative tillage prac-
tices (Malcolm et al., 2012). As the timing of exposure to natural hazards is a factor affecting the impacts of climate risk on
feedstock production, feedstocks should be evaluated for their potential to balance productivity, resilience to climate and
weather, and supply chain efficiency with respect to logistics (see Supply chain logistics). Our review of the assessment
of the vulnerability of cellulosic feedstocks suggests that there are multiple characteristics that influence the relative vulner-
ability and resilience of different feedstocks. If one focuses on maximizing the resilience of feedstocks themselves, the estab-
lishment period (i.e., site preparation, planting, and early growth) is the period when young plants are most vulnerable to
drought, flooding, or other events. In this regard perennial grasses and woody biomass offer distinct advantages due to
greater capacity to cope with weather extremes. On the other hand, when one focuses on flexibility in crop management,
both annuals and perennials offer distinct advantages. The former allows for relatively frequent crop switching to allow
for changing weather and/or market conditions. The latter however, allows for flexibility in harvest times, which can also
be leveraged to provide market advantage and/or respond to favorable or unfavorable climate conditions. Other common
management practices, such as irrigation during establishment and other sensitive periods, could prove an effective strategy
for managing drought stress, although this practice may be constrained by water availability. If, however, such irrigation can
use water recycled from other uses, this would reduce pressure on water resources (Stone et al., 2010). For woody biomass
and forestland, a range of forest management practices may assist in adaptation to reduce vulnerability (Millar et al., 2007;
Ogden and Innes, 2007; Spittlehouse and Stewart, 2003). These include strategies to increase resilience to drought, fire and
disease, such as forest thinning and species diversification (Blate et al., 2009; CCSP, 2008a), as well as strategies to better
enable forest managers to make use of biomass debris generated by such disturbances when they do occur (Curry et al.,
2008; Escobedo et al., 2009). Over the long term, investments in research could lead to genetic improvements that make bio-
energy crops and tree varieties more resilient to stress (Oliver et al., 2009). Other innovative agronomic practices could be
scaled up to improve energy crop production. For example, (Ghimire and Craven, 2011) found that cocultivating the ectomy-
corrhizal fungus Sebacina vermifera with switchgrass resulted in significantly higher biomass yield during drought stress
than control plants during normal conditions. Finally, while insurance is increasingly being adopted in the United States
as a mechanism for managing climate risk to agriculture (Cabrera et al., 2006), the absence of insurance programs for ded-
icated biomass feedstocks puts cellulosic feedstocks at a competitive disadvantage with respect to climate risk management
relative to conventional crops. The rising public cost of the U.S. crop insurance program as well as criticism of the subsidies
has raised questions regarding its long-term sustainability (Glauber, 2013; Goodwin and Smith, 2013; Woodard et al., 2012).
If and when reforms to insurance markets emerge, greater consideration for dedicated energy crop producers could be incor-
porated into that reform process.

Supply chain logistics

Those responsible for arranging and managing the supply chain from the field to the biorefinery, whether it be the pro-
ducer themselves, a producer cooperative, an intermediate broker, or the biorefinery, could face biomass shortages and
higher prices during times of drought. However, the structure of supply chain logistics will be dependent upon how the sec-
tor evolves in the future. Advancements in logistics and handling may create opportunities to streamline operations across
the supply chain and reduce exposure to climate risk. In the conventional biomass supply chain (Fig. 1), each biorefinery
accepts only one crop in only one format (e.g., switchgrass bales or wood chips). In future designs, innovative supply chains
could be developed to convert raw biomass into an engineered feedstock handled and traded much like current agricultural
commodities. Intermediate facilities, or depots, located near the production fields (within 8-16 km) could grind bales of
herbaceous biomass; densify into a stable, flowable physical format (e.g., pellets or cubes); and store until needed by the
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Table 3
Summary of risks, strategies, and opportunities in the bioenergy industry due to extreme weather events summarized by stakeholder.
Stakeholder Risks and opportunities Strategies and opportunities
Feedstock producer o Loss of revenue due to adverse impacts on biomass e Irrigation during drought, particularly during crop
e Loses to insects, pests, late freezes, ice storms, hail, hur- establishment
ricanes, etc. e Once established, woody and perennial crops may be
e Geographic shifts in suitable or optimal growing condi- less affected by climate variability and extreme events
tions for different feedstocks relative to annuals
e Increased availability of biomass residue and debris e Selection of more drought-tolerant crops like forage

associated with ecosystem disturbance sorghum

Increased productivity associated with some bioenergy Forest management to increase tree resilience

crops due to climate shifts and CO, fertilization Genetic improvements for drought resistance

No-till or reduced till in annual crops

Adapting DSSs to include impacts of shocks caused by
extreme weather events

Expansion of crop insurance to cover a wider array of
energy crops

Advanced processing to increase bulk density (for

Supply chain management

Reduced availability leads to higher biomass prices

e Increased competition for biomass for other uses (e.g., reduced transport costs) and convert biomass into a
biopower, bioproducts, livestock feed) uniform-format, commodity feedstock
e Reduced efficiency of supply chain as transport dis- e Increase stability during storage making it possible to

tances to secure needed volume of biomass increase stockpile feedstock

Develop standards or grading schemes to commoditize
biomass feedstocks

Increase capacity to utilize debris from forests and the
built environment

Feedstock shortages due to lower biomass availability Purchase feedstock from biomass brokers to increase
and increased competition available resources

Diversification of feedstocks that can be used

Biorefinery

e Higher feedstock costs .

e Input price volatility e Conversion and handling technologies capable of
e Product price volatility accepting feedstock from a variety of biomass sources
e Short-term (seasonal) scarcity o Flexibility to change production rate depending on
e Water availability for conversion processes feedstock availability and cost

Enhancing road, rail, and barge access to accept feed-
stock from further locations

Select less water-intensive conversion technologies
Diversification of energy products

Development of alternative and available substitutes
Effects on fuel prices Relax terms of trade

Retail price shifts Loosen restrictions on use of inputs for ethanol produc-
Substitutability of inputs tion (using corn for food instead of for fuel)

Increase vehicle fuel flexibility

End use consumers

Public perception of food vs. fuel; social support of
renewable fuels

biorefinery (Hess et al., 2009; Richard, 2010; Sokhansanj and Hess, 2009; Sokhansanj et al., 2009). Such material could be
designed to meet standard physical (e.g., density, particle size) and compositional (e.g., moisture and ash content) criteria
optimized for particular conversion processes. Hess et al. (2009) suggest bulk density targets of 256 dry kg/m> for bales
to be transported locally and greater than 481 dry kg/m? for advanced feedstock commodities. In comparison, current balers
typically produce bales of switchgrass or stover weighing in the range of 140-190 kg/m>. In an analysis by Sokhansanj et al.
(2009), increasing the bulk density of biomass feedstocks from baled biomass with an average density of 160 dry kg/m? to
pellets with an average density of 600 kg/m> decreased transportation cost by 21%. Richard (2010) estimates that to meet
projected demand at a large, commercial-scale biorefinery, a truck would be unloaded every five minutes around the clock.
Achieving higher bulk densities will not only reduce transportation and storage costs, but also reduce the frequency of deliv-
eries to the biorefinery, all of which reduce exposure to climatic events that might compromise the transportation infrastruc-
ture. Another strategy for dealing with biomass shortages is stockpiling of feedstock. Space requirements and the dry-matter
losses could make long-term storage cost prohibitive, yet the issue has received little critical analysis. Future advances in
feedstock preprocessing technologies may lead to more stable products that are suitable for multi-year storage. Commodi-
tized feedstocks could also prove beneficial in the event of feedstock shortages, as biorefineries are forced to purchase feed-
stock from a broader geographical area, including regions with more abundant biomass resources or those not affected by
current weather events. Commoditized feedstocks could be cost-effectively transported longer distances by rail or barge
and purchased from a wide range of suppliers rather than via direct contract with local producers.

Biorefineries
While there are a range of mechanisms for increasing the resilience and efficiency of the supply chain between producers

and biorefineries, additional resilience can be achieved by focusing on the biorefinery itself. As a starting point, meeting the
projected growth targets for future cellulosic feedstock production will require significant expansion in the number and size
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of U.S. biorefineries. Decisions regarding the siting of future facilities can have a significant impact not only on the resilience
of individual facilities, but also the broader energy system. Key considerations with respect to siting are (a) proximity to
potential hazards (e.g., flood plains); (b) proximity to sufficient biomass resources; (c) proximity to sufficient water and
energy resources; and (d) proximity to transportation networks to end use markets (Melo et al., 2009; NCEP, 2006). In addi-
tion to citing decisions, biorefinery design and operations can be used to hedge against uncertainty in the supply of feed-
stocks. For example, designing biorefinery receiving areas and conversion systems capable of handling a wide range of
feedstock formats would enable them to capitalize on a broader array of feedstocks within a given distance (Mascia et al.,
2010; Scheffran, 2010) Yet, the potential tradeoffs in costs and benefits associated with developing dense, flowable feed-
stocks versus constructing a biorefinery capable of accepting diverse feedstocks have not been explored. Biorefinery design
is also relevant to other potential vulnerabilities such as the security of supply of electricity and water. Advances in recent
years have reduced the water usage in thermochemical processes and similar advances are needed, and can be obtained, for
biochemical processes. Meanwhile the use of combined heat and power systems within biorefineries can reduce their reli-
ance upon the electricity grid.

End use consumers

Managing risks to end use consumers of bioenergy can be facilitated by enhancing flexibility in upstream elements of the
supply chain to minimize the risk of climate or weather induced disruptions to energy supply and prices. This includes
broadening the range of feedstocks that can be used in biorefineries, which will reduce upward pressures on prices of
individual commodities due to demand for feedstocks when adverse weather and climate conditions arise. Such flexibility
in bioenergy logistics will also enhance opportunities for the supply chain to capitalize on short-term (e.g., ‘wind wood’)
and long-term (e.g., CO,-fertilization effects in herbaceous grasses) benefits of climate variability and change on feedstock
production. In addition to the logistics of feedstock management, diversification of available energy products for consumers
may reduce pressure on supply-constrained products. For example, ethanol has partially offset the use of gasoline in trans-
portation, and experimental trials are underway with the use of ethanol as a diesel additive as well. Similarly, technologies
for transportation have diversified from gasoline and diesel engines to hybrid-electric, plug-in hybrid, and all-electric
vehicles. Meanwhile, liberalization of international trade in energy products may stimulate domestic production of
bioenergy and streamline the import and export of bioenergy products to better manage domestic supply and demand
(Elobeid and Tokgoz, 2008; Lee and Sumner, 2010).

Decision support for risk management

Because the production of cellulosic biofuel feedstocks takes place under conditions of uncertainty, decision science, an
area of the social sciences, must be included in the interdisciplinary mix of knowledge that seeks to address the complex
problem of managing climate and other risks to the biofuels industry (Garcia-Quijano et al., 2005; Giunipero and
Eltantawy, 2004; Mitchell, 2000; Neiger et al., 2009; Parish et al., 2013; Ramachandra et al., 2005). While documenting
the effects of climate risk and providing better climate forecasts to potential users would be beneficial to climate risk man-
agement, such efforts in themselves are not sufficient (Fraisse et al., 2006; Tribbia and Moser, 2008). Because of the complex
interactions among biophysical, social, and institutional factors that affect agricultural systems, end users need decision aids
and technical assistance to bridge the gap that still exists between available climate forecasts and their routine applications
in agriculture (Meinke et al., 2009; Podesta et al., 1999). To this end, systematic and comprehensive decision support systems
(DSS) that are specific to the bioenergy industry will be needed as the industry matures. Such DSSs can help producers to
better understand the possible responses to climate forecasts and indicate risks associated with alternative responses in
order to obtain benefits from a weather or climate forecast (Letson et al., 2001), not to mention forecasts of market condi-
tions. Examples of some of the types of DSSs that have been developed or adapted for the bioenergy industry to date include:
biomass availability data sets (USDOE, 2011), agricultural policy models (English et al., 2006; Ray et al., 1998), supply chain
models (Sokhansanj et al., 2008), and crop production models (Nair et al., 2012). However, further refinement of these tools
to include system shocks caused by climate variability is needed.

Conclusions

As the U.S. biofuels industry continues to evolve to make significant contributions to future domestic and international
energy production, it will inevitably face challenges associated with climate risk. These challenges may be short term or per-
sistent, that may be localized or diffuse, and their impacts may be experienced differentially across the supply chain. Yet, as
with conventional agricultural industries, stakeholders along the supply chain can cope and adapt. Some responses may arise
autonomously, such as the balancing of reduced feedstock production during adverse growing conditions with higher com-
modity prices that mitigate revenue and profit impacts. Other responses will be more deliberate. Feedstock producers can
opt to grow crops and varieties that are well-suited to drought and other extreme weather events, or they may choose man-
agement strategies that increase resilience. Commoditization of biomass feedstocks enables more cost-effective transporta-
tion and handling and makes it feasible to ship material from regions that may be spared droughts or extreme events and
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with high availability, to facilities where feedstocks are limited. These advanced feedstocks also tend to be more stable in
storage and may make it possible to stockpile biomass. Biorefineries that are designed with flexibility in feedstock specifi-
cations, production rate, and products will benefit during times when feedstocks are limiting. In practice, these strategies
will depend on improved understanding of climate risk and the mainstreaming of climate risk management into future
development of the industry.

Mainstreaming such risk management practices into the bioenergy supply chain will require increased awareness of both
the risks and opportunities associated with climate variability and climate change to stakeholders as well as greater invest-
ments in research and development efforts regarding climate risk (Table 1). As a path forward, collaboration is needed
between the climate science community and bioenergy feedstock supply and logistics experts to evaluate climate implica-
tions on the biofuels supply chain at different scales including feedstock production, logistics, refining, and commodity mar-
kets. Near-term efforts could include: (1) experimentation with regionally-downscaled models or coupled climate-crop
models to account for climate-associated uncertainty; (2) accounting for future climate variability and climate change uncer-
tainty in national cellulosic feedstock supply and price projections; (3) developing mechanisms for reducing the water and
energy requirements of advanced processing technologies; (4) designing economical logistics and storage systems for den-
sified biomass; (5) analyzing tradeoffs associated with different transportation and use of different feedstocks; (6) develop-
ing DSSs for different supply chain elements; and (7) employing social science research to insure that research and
development products are actionable within the context of drivers beyond climate. Attempts to manage climate risk, how-
ever, should also be cognizant of the potential externalities (social, economic, or environmental) that may arise from differ-
ent management practices (Dale et al., 2013; McBride et al., 2011; Parish et al., 2013; Schubert and Blasch, 2010).This
collective knowledge should subsequently become part of the calculus regarding the potential contributions of cellulosic
bioenergy to U.S. energy security, air quality, and greenhouse gas mitigation objectives.
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