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Agroecosystem models that can incorporate management practices and quantify environmental effects
are necessary to assess sustainability-associated food and bioenergy production across spatial scales.
However, most agroecosystem models are designed for a plot scale. Tremendous computational capacity
on simulations and datasets is needed when large scales of high-resolution spatial simulations are con-
ducted. We used the message passing interface (MPI) parallel technique and developed a master-slave
scheme for an agroecosystem model, EPIC on global food and bioenergy studies. Simulation performance

Iéfgglv]‘)errdS: was further enhanced by applying the Vampir framework. On a Linux-based supercomputer, Cray XT7
Food &y Titan, we used 2048 cores and successfully shortened the running time from days to 30 min for a global

30 years of modeling of a bioenergy crop at the resolution of half-degree (62,482 grids) with the message
passing interface based EPIC (mpi_EPIC). The results illustrate that mpi_EPIC using parallel design can
balance simulation workloads and facilitate large-scale, high-resolution analyses of agricultural produc-
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tion systems, management alternatives and environmental effects.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The intertwined global issues of food security, bioenergy and
climate change call for large scale high-resolution analysis of agri-
cultural landscapes (Lynd et al., 2011; Lobell et al., 2011; Savage,
2013). Agroecosystem modeling provides opportunities for deci-
sion makers to evaluate trade-offs among various scenarios and
management options. Spatial variability in climate (e.g., precipita-
tion, temperature), soils, and crop management practices (e.g., fer-
tilizer, irrigation, tillage, chemical control and harvest) affect crop
productivity and environmental effects. Ideally, decision makers
would prefer to guide management practices and production sys-
tems toward more sustainable options. But enormous data sets
must be integrated and processed if modeling is to explore the
implications of alternative land management across spatially het-
erogeneous scales. This is especially true when land managers or
decision-makers want to evaluate trade-offs between management
practices, environmental impacts and aspects of the sustainability
of production systems in different locations.
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The incorporation of spatially explicit data for climate, biophys-
ical and crop management variables requires enormous computa-
tional capacity, particularly when the scope of analysis expands
from plot-scale to larger scales, such as county, state or global. Tra-
ditional agroecosystem models, particularly biophysical process-
based models, are designed for single-site agricultural research
tests, production potential assessment and management practice
optimization. They are valuable tools for studying novel cropping
systems, new management practices at specific sites or local anal-
yses. However, applying these process-based models at national
and global scales is challenging due to the requirements for input
data, calibration, validation and simulation setups appropriate for
each of thousands to millions of spatial points (Nichols et al.,
2011; Wang et al., 2012).

Super-computing advances have opened the door to detailed,
global-scale modeling simulations that were previously considered
impractical if not impossible. Several preliminary studies have
demonstrated the potential of high-performance computing
(HPC) application to large-scale data management, modeling and
analysis of agroecosystem functions. For example, Hawick et al.
(1997) proposed to use an HPC-based geographic information sys-
tem for storage, access and processing of weather, soil, and land
management data. Kuo et al. (2004) designed an HPC-visualization
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tool for use in displaying a three-dimensional environment for
farming system analyses. Wang et al. (2005) describe compo-
nent-based software architecture for spatially explicit ecosystem
models that could be adapted to address the large scale high-reso-
lution ecosystem simulation challenge. High-resolution modeling
with a parallel job launcher was applied to study climate change
impacts on pasturelands on a 200-processors cluster machine
(Vital et al., 2013). HPC can facilitate detailed management optimi-
zation at local scales, and can help aggregate regional, national and
global distributions of production and environmental impacts as a
tool for decision makings at larger spatial scales.

Demonstrations of regional and national high-resolution agro-
ecosystem modeling under an HPC environment are limited
(Nichols et al., 2011; Zhao et al., 2012). Nichols et al. (2011) con-
structed a modeling system to conduct regional high-resolution
(30 m) assessment of production and environmental effects for
cropping systems in the Midwest US with the high-performance
computing Environmental Policy and Integrated Climate (HPC-
EPIC) model. The study assigned jobs or simulation packages con-
currently to multiple processors by “embarrassingly parallel”
design - also referred to as “pleasingly parallel” for work that
can be distributed because it requires little or no communication
of results among tasks. This approach used Linux-based computing
cluster and achieved a 40-fold reduction in the time required to
run 140,000 EPIC simulations. A hybrid HPC approach was adopted
to simulate national agricultural systems of Australia on a heterog-
onous distributed computing grid (Zhao et al., 2012). Similar to the
embarrassingly parallel design in HPC-EPIC, jobs or simulation
packages were sent to the individual computers on the grid. The
hybrid HPC approach accelerates most processing by 1000-fold
and completes jobs within a few days rather than months. How-
ever, both approaches are challenged with simulation load balanc-
ing which can delay overall execution time due to just a few
extremely slow or failed executions. Slow or failed executions on
a few nodes in clusters or an individual computer on a hybrid com-
puting grid often occur (Nichols et al., 2011; Zhao et al., 2012). A
few failed executions can cause significant processing delays when
millions of simulations are conducted for large scale of high-reso-
lution ecosystem studies involving massive data management (I/O
processing) and bandwidth/memory.

To meet the heavy computational load of large-scale high-reso-
lution agroecosystem simulations, we developed a design to
address the problem of simulation load balancing using the mes-
sage passing interface (MPI) on clusters or supercomputers. We
directly coded MPI routines into a widely applied agroecosystem
model, EPIC, using a master/slave scheme to dynamically manage
model input, outputs and simulations. An application of global
half-degree biomass productivity analysis was used to test and
evaluate this new mpi_EPIC approach to agroecosystem modeling.

2. mpi_EPIC development and computational improvement
2.1. Description of the EPIC model

The EPIC model is a process-based agroecosystem model repre-
senting soil-crop-atmosphere interrelationships with various
management scenarios (Williams et al., 1984). Major processes in
the model include plant growth, development and production,
nutrient cycling and nonpoint sources pollution, emissions of
greenhouse gases, and plant management practices. With contin-
uing testing and improvement, the EPIC model has become a
widely applied tool designed to meet needs for production estima-
tion, environmental effect assessment, and climate change studies
(Easterling et al., 2001; Mausbach and Dedrick, 2004; Gassman
et al.,, 2005; Liu et al., 2008; Balkovi¢ et al., 2013; Rosensweig

et al., 2014). Currently, EPIC is able to simulate over 100 crops
and has been calibrated and applied in over 30 countries and
regions (Gassman et al., 2005).

2.2. mpi_EPIC design

Each EPIC simulation represents a single location or point,
described by different input variables such as site characteristics
(e.g. location, slope, and soil), crop rotation, management practices,
and weather. Usually, the individual simulations are of short dura-
tion, typically 20-30s for a 30 year daily time step simulation.
However, the computational time can vary widely depending on
the complexity of involved biogeochemical processes. For example,
the numerical processes simulating soil water and nutrient trans-
port, and gas diffusion in soils can be time-consuming due to mul-
tiple layers of soils and management practices. Since some points
are more computationally demanding than others, the total time
required to complete a full set of simulations can be reduced by
distributing the work load to processors that have completed one
job, and are available for another. This “load balancing” can be
done under parallelization schemes, for example, by managing jobs
among available cores on a supercomputer.

To accelerate high-resolution modeling at large scales, e.g.,
national and global ecosystem studies, we redesigned the EPIC
module structure and calling sequence to be capable of dynami-
cally balancing simulations across multiple cores of clusters or
supercomputers. In this study, we adopt MPI to distribute site-spe-
cific simulation jobs among cores. A master/slave paradigm is
applied to balancing job assignments and input control (Fig. 1).
The master process generates and schedules thousands of jobs
and sends them to each slave process for execution. The slave pro-
cesses dynamically communicate with the master process for job
completion and new job assignments. If a simulation fails, the sim-
ulation ID is sent to master process for check by users, and the next
simulation will be continued. The failed simulations can be further
examined through output log information.

2.3. Titan and Lustre file system advantages associated with high-
resolution simulations

The computational platform used in this study is the Cray XT7
Titan supercomputer at the National Center for Computational Sci-
ences (NCCS) at Oak Ridge National Laboratory (ORNL). Each Titan
node consists of a 16-core AMD 6274 Opteron processor in con-
junction with Nvidia Tesla K20X GPUs to boost its computational
capabilities and improve energy efficiency. The 18,688 of these
nodes perform at a theoretical peak of 27 PetaFLOPS (27 quadril-
lion floating point operations per second). A center-wide Lustre
file-system provides 5 PB of disk space for all NCCS computing
resources. The NCCS has implemented customized queue policies
to encourage large jobs to run in a timely fashion on the systems
at ORNL.

In order to obtain detailed information about how data are pro-
cessed in our global simulation using mpi_EPIC in a parallelization
design, the Vampir framework (Kniipfer et al., 2006) is used to
gather information on simulation characteristics for diagnosis.
The Vampir framework consists of two components, VampirTrace
and Vampir. VampirTrace is used to instrument the source code
of the program and to manage the recording of events while the
instrumented program is running. Vampir is used to visualize the
data/events gathered during the program execution. Within the
Vampir framework, the instrumentation could be done via com-
piler instrumentation or using the Tuning Analysis Utility (TAU)
instrumentor (Shende and Malony, 2006). A detailed explanation
on how to configure the Vampir framework and TAU for environ-
mental simulation can be found in Domke and Wang (2012).
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Fig. 1. Message passing interface (MPI) parallel design of the mpi_EPIC model for large scale high-resolution agroecosystem modeling. Through a mast/slave scheme, jobs are
dynamically assigned to slave cores by the master core on computing clusters or supercomputers.

2.4. mpi_EPIC parallel coding, testing and computational improvement

Our tests indicate that introducing a MPI parallel scheme to the
existing sequential Fortran-based code of EPIC represents an
important improvement in computational efficiency. This was
achieved by splitting the standard EPIC model into two sub-mod-
ules. A new main routine (master) handles inputs and outputs
(e.g., site, weather, parameters) and coordinates task assignments.
The master also includes the Fortran-based MPI parallel scheme,
which employs a master/slave algorithm. The slave module
receives information from the master and reports results back.
The biophysical processes simulations run by each slave are
unchanged from the original EPIC.

After the coding was completed, a series of tests were con-
ducted to examine the effectiveness of the parallel design, outputs,
and load balancing. We used the parallel debug tool, Distributed
Debugging Tool (DDT) to diagnose the performance and debug
the errors on Titan. The outputs including format and values from
mpi_EPIC were carefully compared with the outputs from the EPIC
model (without the MPI modification) when processing the same
simulation input data. We found that mpi_EPIC was able to dupli-
cate the format and values of EPIC without error.

We examined load balancing (Fig. 2a) through a series of stan-
dard test jobs on mpi_EPIC. The tests illustrated that it took signif-
icantly different amounts of time to execute the same number but
different simulations. For example, a job on processor 175 used
over 120 s to complete, but it took under 40 s for another job with
the same number of simulations on processor 170 (Fig. 2a). After
we examined the execution time of those model components that
were most time-consuming, we found that some simulations took
longer because of numerical procedures used to solve subsurface
biogeochemical processes. The simulations illustrated in Fig. 2a
applied a standard job size of 20. Through a series of tests consid-
ering two to one hundred simulations per job, we found that a job
size with five was the optimum for the mpi_EPIC simulations on
Titan. We therefore adjusted the job size (number of simulations
sent to a slave) to five when the master/slave scheme was applied
and found similar execution times across cores (Fig. 2b). The
mpi_EPIC using parallel design and optimized job size required
28 min to complete the same global simulation that required over

two weeks using a sequential execution on a single core (Table 1).
We also documented the time required to complete the same sim-
ulation test package with HPC-EPIC (embarrassingly parallel
design) (Nichols et al., 2011). Table 1 illustrates that mpi_EPIC also
reflects an improvement relative to HPC-EPIC, despite the different
types of cores and I/O systems used in Titan and Oak Ridge Insti-
tute Cluster (OIC). Of the approaches tested, mpi_EPIC offers the
greatest capacity to efficiently complete a large number of agro-
ecosystem simulations when using computing clusters or
supercomputers.

Next, we conducted a scalability analysis of mpi_EPIC to deter-
mine to what extent we could reduce the execution time by adding
computing power (additional cores) to complete simulations. The
total computational time for identical global simulation setups
with computing cores ranging from 16 to 2048 was measured
(Fig. 3). We observed nearly linear scalability in terms of propor-
tional time reduction with each additional core when 128 or fewer
cores were applied in the tests. This scalability fell slightly when
more computing cores beyond 128 cores were used (Fig. 3). As
more cores or computing resources are available, the speed of glo-
bal simulation can be considerably increased. Although these tests
were conducted on Titan, a super computer at ORNL, the model can
be used similarly in the other computing clusters for applications.

3. mpi_EPIC application to large-scale agroecosystem modeling
3.1. Modeling workflow

In order to test mpi_EPIC, we conducted a study of global bio-
mass productivity on Titan. The workflow was applied for a global
half-degree assessment of production and environmental effects
(Fig. 4). This design integrates global natural resources data sets,
local management scenarios, model calibration and validation,
simulation, and simulation output processing, and result analysis.
The database of natural resources and management provided
model inputs of weather, soil property, slope, land use and various
management practices commonly used by biophysical crop mod-
els. This workflow can also be applied to other large-scale, high-
resolution crop modeling assessment to consider effects on
agroecosystems.
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Fig. 2. Diagnosis and improvement of parallel design of the mpi_EPIC model using Vampir tools on the Titan, a supercomputer at Oak Ridge National Laboratory: (a)
execution time (in seconds) for each job in different cores (processers) before the improved master-slave design, and (b) execution time (in seconds) in different cores
(processers) after the improved master-slave design. Note that a different time scale is used in (b). The green represents physical-process simulation, the yellow for 1/0, and
the red for master core communication processing. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

Execution time (min) required to model global switchgrass productivity and environmental effects using mpi_EPIC on the Titan supercomputer and HPC-EPIC on the OIC
computing cluster at Oak Ridge National Laboratory (Nichols et al., 2011), USA. The standard test involved over 1500 individual EPIC simulations. The times reported here for

mpi_EPIC reflect the optimized job-size of five simulation routines per job.

# Cores Titan (mpi_EPIC) OIC (HPC-EPIC)
1 16 64 128 2048 1 50
Execution time (min) 18,184 1221 308 156 28 19,527 935

3.2. mpi_EPIC model input processing and calibration

Model inputs used for mpi_EPIC include three major categories
of data (weather datasets, soil properties, and landscape attri-
butes). We generated 62,482 simulation units using the half-
degree global land mask from the Climate Research Unit — National
Centers for Environmental Protection (CRU-NCEP) (Viovy, 2008)
and 30-year daily weather input data (1980-2010) for each simu-
lation unit. Daily CRU-NECP data include four sets of 6-h weather
data, total shortwave solar radiation (W m~2), air pressure (Pa),
temperature (K), U-wind (m s~ 1), V-wind (m s~ '), and precipitation
(mm). The daily radiation (MJ m—2d~'), maximum temperature
and minimum temperature (°C), precipitation (mm), average rela-
tive humidity (%) and average wind speed (m s~') were calculated
from CRU-NECP data. Next, we processed soil property data for
each simulation unit using the Harmonized World Soil Database
(HWSD) (FAO/IIASA/ISRIC/ISSCAS/JRC, 2008). Contents of sand, silt,
clay, gravel content, bulk density, and soil organic carbon as well as
cation exchange capacity, texture, and pH of two soil layers (0-
50 cm, 50-100 cm) from the dominant soils were assigned to each
simulation unit from the polygon-based HWSD. Slope data are also
needed in the EPIC model and were calculated from 30 arc-second
global elevation data, GTOPO30 (USGS, 2008) using ArcGIS10 (ESRI,
2011). The first simulation year, 1980 was treated as a spin-up or
initialization to balance the soil variables that are the most

sensitive to physiological processes in EPIC such as soil water
and nitrogen. Therefore, this year is excluded from simulation
analysis.
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Fig. 3. Parallel computing scalability analysis of the mpi_EPIC model on Titan.
Speedup refers to how much a parallel design is faster than a corresponding
sequential algorithm when processing the same workload.
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In this study, we used mpi_EPIC to assess global biomass pro-
ductivity and environmental effect of a bioenergy crop, switchgrass
(Panicum virgatum L.). This bioenergy crop has been identified as
one of the potential crops for biomass production in the US
(Parrish and Fike, 2005). Agronomic characteristics and manage-
ment for switchgrass cultivars in different regions were obtained
from the field trial database developed at https://bioenergykdf.
net/sites/default/files/Introduction_global_switchgrass_trial_dataset.
pdf. The database consists of over 2000 global observations from
different continents, including the detailed information of site,
cultivar, management practices, and biomass production. We
designed 80 management files representing the various switch-
grass cultivars and management practices (e.g., planting dates, fer-
tilizer rates and harvesting dates) based on the studies from Kiniry
et al. (2006), Wullschleger et al. (2010) and Nichols et al. (2011).

mpi_EPIC was carefully calibrated with the global switchgrass
agronomic databases. Over 50 crop parameters would be
considered for modification to different switchgrass cultivars in
different ecological zones. Among them, the crop physiological
parameters (radiation use efficiency, leaf area indices, harvest
index, base and optimal temperature, nutrient parameters, root
ratio) are critical to calibration. In this study, we used two com-
mon indicators of model performance evaluation using the REG
procedure in SAS (SAS Institute, 2012). Our calibration results
indicated that mpi_EPIC was able to simulate switchgrass produc-
tivity well with r? = 0.67 and root mean square errors (RMSE) less
than 3.69 Mg ha~! (Fig. 5). Most outliers of calibration for switch-
grass cultivars were within one standard deviation of the
observed values. Overall, the calibrations for the major ecological
zones were acceptable although further improvements in the
continental calibration are necessary for some sub-continental
regions and can be made when more experimental data are
available.

3.3. Simulation analysis of switchgrass biomass production

We illustrate the simulated biomass production potential of
switchgrass in Fig. 6. The average switchgrass productivity ranges
from near zero in boreal and desert areas to a maximum exceeding
30 Mg ha~! in moist tropics. However, these extreme low and high
values are uncertain because they are simulated for areas where
reliable field-trial data were not available to support crop parame-
ter calibration.

The mpi_EPIC model simulates production potential based on
biophysical factors across the globe, regardless of current land
cover, markets and zoning. High simulated productivity does not

30

R?=0.67
RMSE =3.69 +

25
20

15

Predicted yield (Mg/ha)

10

0 5 10 15 20 25 30
Observed yield (Mg/ha)

Fig. 5. Calibration and validation of the mpi_EPIC model for large-scale high-
resolution agroecosystem analysis. The solid line is 1:1 line, and the dotted lines
show one standard deviation from the 1:1 line.

necessarily identify the best opportunities for cultivating switch-
grass. This case study simulates high potential productivity in
areas with favorable climate and soils even though other local con-
ditions and current land cover may limit or prohibit cultivation.
Areas with high productive potential also include lands that have
been under cultivation for food crop production. This is not sur-
prising because agricultural land is expected to represent relatively
fertile areas in the ecological zones. Furthermore, environmental
variables such as soil organic carbon and nonpoint source pollu-
tions are not included in this discussion because they cannot be
calibrated and validated due to limited data. Therefore, enhanced
global field experiment data for calibration and validation will be
critical to further improve the global applications to food and bio-
energy ecosystem studies.

4. Conclusion

To advance capabilities for analyses of global productivity and
sustainability of food and bioenergy under climate change, we
used the MPI parallelization technique and applied it to the mpi_
EPIC model. The master/slave scheme in the model was capable
of managing job allocation and execution on an ORNL supercom-
puter. A case study to test capacity to complete high-resolution
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Fig. 6. Potential global biomass productivity of switchgrass simulated by the mpi_EPIC model.

agroecosystem simulations using the mpi_EPIC model was con-
ducted for a bioenergy crop, switchgrass. A global 0.5-degree reso-
lution crop production assessment involved 62,482 simulations
and was completed in less than 30 min. The simulation processed
approximately 11 gigabytes of information in the model database.
The results show that the mpi_EPIC model is capable of serving a
valuable role in exploring production and management scenarios
and corresponding environmental effects for food and bioenergy
production under changing climate conditions. Indeed, the mpi_
EPIC modeling platform demonstrated that it can effectively man-
age the 2.2 billion 1-km scale agroecosystem simulations projected
by Wang and Kang (2013) as required to assess global effects of dif-
ferent management options and production scenarios. This study
provides an insight of how traditional sequential ecosystem mod-
els can effectively be integrated into available HPC systems for
various ecosystem assessments.

This study targets large scale of high-resolution agroecosystem
modeling for regional and global agricultural production and sus-
tainability analysis, but the demand on intensive computational
resources, large dataset management and knowledge of HPC appli-
cation on clusters or supercomputers make its wide applications
challenging. Some HPC-based code in mpi_EPIC associated with
different module versions and libraries on machines or platforms
may have to be adjusted and validated. Limited training on parallel
programming and experience on clusters will facilitate solving the
problem of applications. Additionally, detailed model input data
and experiment data for calibration and validation are other chal-
lenges that limit reliable regional and global applications.
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