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In order to aid operations that promote sustainability goals, researchers and stakeholders use sustainability as-
sessments. Although assessments take various forms, many utilize diverse sets of indicators numbering any-
where from two to over 2000. Indices, composite indicators, or aggregate values are used to simplify high
dimensional and complex data sets and to clarify assessment results. Although the choice of aggregation function
is a key component in the development of the assessment, there are few literature examples to guide appropriate
aggregation function selection. This paper applies themathematical study of aggregation functions to sustainabil-
ity assessment in order to aid in providing criteria for aggregation function selection. Relevant mathematical
properties of aggregation functions are presented and interpreted. Cases of these properties and their relation
to previous sustainability assessment research are provided. Examples show that mathematical aggregation
properties can be used to address the topics of compensatory behavior and weak versus strong sustainability,
aggregation of data under varying units of measurements, multiple site multiple indicator aggregation, and the
determination of error bounds in aggregate output for normalized and non-normalized indicator measures.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A challenge for assessing sustainability is that it is not a single entity
that can be readily measured. Instead sustainability is a combination of
several aspects of the physical and biotic environment, social welfare,
and economic wellbeing. Furthermore, it is an aspiration rather than a
state. Its meaning is largely determined by contextual circumstances
(Efroymson et al., 2013). Yet it is important to be able tomeasure, quan-
tify, and discuss progress toward that goal.

Current sustainability assessment approaches often represent sus-
tainability using multiple indicators, multiple variables, or multiple
data points. At a minimum, the consensus is that sustainability needs to
incorporate environmental, social, and economic conditions, which are
referred to as the three pillars of sustainability (Mori and Christodoulou,
2012; Hacking and Guthrie, 2008; Mayer, 2008; Brundtland and World

Commission on Environment and Development, 1987). In practice, sus-
tainability indices can incorporate data fromover 2600 indicator variables
(The Living Planet Index, (McRae et al., 2012)). To add further complexity,
each input variable often has an associated data set containing multiple
observations. These large amounts of data about diverse components of
sustainability are difficult to manage and nearly impossible to visualize
without some sort of compression or reduction of dimensionality.

Aggregation functions are one method employed to accomplish this
task of clarifying and simplifying data. Aggregation theory is the area of
mathematics that explores the form and properties of such aggregation
functions. In ecological economics the topic of aggregation comes up in
regard to spatial aggregation (Su and Ang, 2010), valuation of ecosys-
tem benefits (Tait et al., 2012; Lele and Srinivasan, 2013), calculation
of conservation benefits (Winands et al., 2013), and combining informa-
tion across sectors (Lenzen, 2007; Marin et al., 2012).

This study introduces basic properties, definitions, and theory relat-
ed to the process of aggregation in order to aid in providing a rigorous
mathematical baseline for further development of sustainability assess-
ment techniques and methodologies. This paper deals with the condi-
tions that must be met in order for information to be combined in an
accurate, consistent, and overall robustmanner. Five examples highlight
some of themany relationships that can bederivedbetweenmathemat-
ical aggregation theory and sustainability assessment. These examples
include mathematical interpretation of weak and strong sustainability,
a proof that provides a simple bound for aggregate outputs under vary-
ing levels of relative error using the arithmeticmean, and two examples
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of how grouping and aggregation can lead to inconsistent results de-
pending on how aggregation takes place. The final section discusses
multiple invariance properties with respect to the scale ofmeasurability
of the indicators to be aggregated and includes an example of how a
simple change in measurement units can create inconsistent aggregate
outputs. The 2004 paper by Ebert and Welsch, which provides a guide-
line for choosing aggregation functions, is interpreted and placed into
the larger mathematical aggregation theoretic context.

2. Basic Properties of Aggregation Functions

The process of aggregation is ubiquitous in the sciences. However,
the word aggregation can take on different meanings within different
disciplines. The book Aggregation Functions (Grabisch et al., 2009)
presents a comprehensivemathematical treatment of aggregation func-
tions and their properties and is a unique resource within the mathe-
matics literature. The definitions provided in Grabisch et al. (2009) are
adopted here. Beginning with the formal definition for an aggregation
function, the following section establishes the basic terms and proper-
ties used. For each set of properties presented, a mathematical defini-
tion is provided along with interpretations related to sustainability
assessment to provide context.

2.1. Definition of an Aggregation Function

In general, an aggregate value is a single representative value for an
arbitrarily long set of related values. An aggregation function is the
mathematical operation that maps the input values to the representa-
tive output value or ‘aggregate’. Formally, for somenonempty real inter-
val I⊆ℝ containing the values to be aggregated, an aggregation function
in In is a function:

A nð Þ
: In→I

that

(i) is nondecreasing (in each variable)
(ii) fulfills the following boundary conditions:

inf
x∈In

A nð Þ xð Þ ¼ inf I and sup
x∈In

A nð Þ xð Þ ¼ supI ð1Þ

where n represents the number of variables in the argument of the func-
tion, that is, the number of values to be aggregated or the dimension of
the input vector, x. In general, an aggregation function A(n)(x) is written
as A(x) with the number of variables in its argument suppressed. Also
note that the domain associatedwith a given aggregation function often
changes with assessment context.

As an interpretation, condition (i) states that if any input value
increases, the aggregate output value cannot decrease. Condition
(ii) dictates what must happen at the boundary values. For example,
if a set of indicators are normalized to values between 0 and 1, then the
nonempty interval is given by I = [0, 1], and an aggregation function
A(n)(x) must satisfy A(n)((0,..., 0)) = 0 and A(n)((1,..., 1)) = 1.

Table 1 gives some common aggregation functions and their defini-
tions. The aggregation functions most frequently used in practice for
sustainability assessment are the arithmetic and weighted arithmetic
means (Singh et al., 2009; Böhringer and Jochem, 2007). Although the
mathematical properties used to describe function behavior are numer-
ous, certain properties of functions have particular importance to aggre-
gation and are included here. The properties presented may help
determine appropriate choices of aggregation functions given the sus-
tainability indicator variables selected and the intended use within the
assessment. Some of the mathematical definitions and properties pre-
sented, such as continuity, are familiar tomathematicians, while others,
such as internality, conjunctivity, and disjunctivity as well as some of
the grouping-based properties, are less familiar. However, within the
context of sustainability assessment and aggregation theory, even fa-
miliar properties of functions can take on new meanings. The function
property definitions in this paper follow the format of Grabisch et al.
(2009), and interpretations relevant to sustainability assessment are
provided when possible. Examples relating selected properties to sus-
tainability assessment follow each set of properties provided.

2.2. Continuity Properties

Continuity relates closeness in the input variable(s) to closeness in
the output variable(s) where closeness is defined using a specified
norm. As such, continuity is important for understanding how the ag-
gregation function performs with variable data or noise. Stronger and
weaker forms of continuity exist. A strong form, Lipschitz continuity, al-
lows for computing exact bounds in the output error of the aggregation
function by knowing the error present in the input. An example of how
the property of Lipschitz continuity of an aggregation function may be
put to practical use in sustainability assessment is given next. Table 2 in-
cludes definitions for standard continuity and Lipschitz continuity for
comparison and reference.

2.3. Example: Lipschitz Continuity and Error Estimation in the Arithmetic
Mean

Error estimation and uncertainty quantification through the aggre-
gation process may be approached by utilizing a variety of techniques.
Certain aggregation functions have properties that allow one to provide

Table 1
Example aggregation functions.

Function name Formula Assumptions/notes

Arithmetic mean A xð Þ :¼ 1
n∑

n
i¼1xi A : In→I; x : ∈I

Weighted arithmetic mean A(x) := ∑i = 1
n wixi A : In→I; x : ∈I w1; ; :: ; :;wnð Þ∈ 0;1½ �n∑n

i¼1wi ¼ 1
Ordered weighted average aA(x) := ∑i = 1

n wix(i) A : In→I; x : ∈I
(w1,..., wn) ∈ [0, 1]n∑i = 1

n wi = 1
Geometric mean A(x) := (∏i = 1

n xi)1/n A : In→I; x : ∈I
bIf n N 1 then I⊆ 0;∞ð Þ

Weighted geometric mean A xð Þ :¼∏n
i¼1x

wi
i

A : In→I; x : ∈I
(w1,..., wn) ∈ [0, 1]n∑i = 1

n wi = 1
If n N 1 then I⊆ 0;∞ð Þ

Minimum A(x) := min{x1,..., xn}
(or OS1(x): = x(1))

Also written Min(x) =∧i = 1
n xi

and OS1 is the 1st order statistic
Maximum A(x) := max{x1,..., xn}

(or OSn(x): = x(n))
Also written Max(x) =∨i = 1

n xi
and OSn is the nth order statistic

a x(i) represents the ith lowest coordinate of x, s.t. x(1) ≤ ⋯ ≤ x(k) ≤ ⋯ ≤ x(n).
b The geometric means are not aggregation functions on every domain, specifically, for n N 1 then I must satisfy I⊆ 0;∞ð Þ.
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exact bounds in output error depending on the input error (e.g., the
arithmetic mean and its Lipschitz continuity).

Consider the following example: Let x = (x1, x2,..., xn), xi ∈ [0, 1] ∀ i
be a vector whose components are a set of n indicators to be aggregated
using the arithmetic mean, A xð Þ :¼ 1

n∑
n
i¼1xi. Assume that there is vari-

ability in the measures of each of the components, xi, and that each in-
dicator has a maximum relative error equal to ϵ for some ϵ N 0. Let xi
be the best estimate of indicator xi. Let x̂i ¼ xi þ xi � ϵ , be the upper
bound of measures of indicator i. Let x̌i ¼ xi−xi � ϵ be the lower
bound in the measurement of indicator i. Let x̂ ¼ x̂1;…; x̂nð Þ and
x̌ ¼ x̌1;…; x̌nÞð . It follows that jjx̂−x̌jj1 is the largest distance (using
the L1 norm1) between any two vectors of indicator measures. Further,
this difference simplifies as follows:

x̂−x̌k k1 ¼
¼
Xn
i¼1

x̂i−x̌ij j

¼
Xn
i¼1

xi þ xi � ϵð Þ− xi−xi � ϵð Þj j

¼
Xn
i¼1

2 ϵj j � xij j
¼ 2 ϵj j � xk k1:

Using the Lipschitz continuity of the arithmetic mean (Grabisch
et al., 2009) with Lipschitz constant 1

n, the following bound must hold
for the largest error in our aggregate value:

A x̂ð Þ−A x̌ð Þj j≤ 1
n

x̂−x̌k k1
¼ 2 ϵj j

n
xk k1:

ð2Þ

Inequality (2) gives a simple bound to the output in the aggregate
value of a set of indicator variables with the same relative error, ϵ,
using the arithmetic mean as the aggregation function. A relevant sim-
plification comeswhen one considersmeasures that have been normal-
ized to fall between the values of 0 and 1. In this case, x̂k k1≤n, and thus
A x̂ð Þ−A x̌Þj≤2 ϵj jðj .

Since it is not generally expected that each of the indicatorswill have
the same relative error in measurement, a more realistic example may
include relative errors, ϵi, for each indicator variable xi. To treat
this case in which each indicator has its own maximum relative error,
let x̂i ¼ xi þ xi � ϵi be the upper bound of measures of indicator i,
let x̌i ¼ xi−xi � ϵi be the lower bound of measures of indicator i. Also,
let x̂ ¼ x̂1; :: :; x̂nð Þ and x̌ ¼ x̌1; :: :; x̌nÞð . With different relative errors for
each indicator, the largest relative error among the set of relative errors

determines the bound. Let ϵmax =max{ϵ1,..., ϵn}, let x̂
max
i ¼ xi þ xi � ϵmax,

let x̌max
i ¼ xi−xi � ϵmax , and let x̂max ¼ x̂max

1 ; :: :; x̂max
n

� �
and x̌max ¼

x̌max
1 ; :: :; x̌max

n Þ�
. It follows that x̂−x̌k1≤ x̂max−x̌maxk1

���� and one can
obtain a bound in the aggregate value, similar to the bound above,
given by:

A x̂ð Þ−A x̌ð Þj j≤ 1
n

x̂−x̌k k1≤
1
n

x̂max−x̌maxk k1
¼ 2 ϵmaxj j

n
xk k1:

ð3Þ

In this case if indicator measures are normalized using distance-to-
target to fall in the interval between 0 and 1, then xk k1≤n, leading to
A x̂ð Þ−A x̌Þj≤2 ϵmaxj jðj .

Inequalities (2) and (3) show, for a set of indicator variables and
some known relative error in their measurement, there is a precise
bound for the arithmeticmeanmaximum range of aggregate output. Al-
though this formulation is not relevant for unbounded error terms such
as when ϵ is assumed to follow some probability distribution, the result
is useful for sensitivity analysis as well as the quantification of uncer-
tainty in aggregate output given the uncertainty in indicator input
values, both of which are key components in sustainability assessment.

2.4. Internality, Conjunctivity, and Disjunctivity Properties

The degree towhich, and if, compensation should occur between in-
dicator variables to be aggregated is often contentious (Mori and
Christodoulou, 2012; Hacking and Guthrie, 2008; Mayer, 2008). These
disagreements are based on the fact that compensation between indica-
tor variables implies that the quantities represented by those variables
are in some sense substitutable. The use of the term compensatory or
compensation in this paper describes the ability, in the aggregate output,
of ‘high’ input component values to offset ‘low’ input component values,
and vice-versa. Hacking and Guthrie (2008) point out that the Living
Planet Index (McRae et al., 2012) utilizes a mathematically appropriate
aggregation function but is flawed in that it assumes the substitutability
of different species. The properties of internality, conjunctivity, and
disjunctivity (defined in Table 3) are all related to how functions deal
with extreme elements of input vectors and if the aggregate output
falls strictly within the range of component input values or not. Thus,
this set of properties is directly related to the compensatory behavior
of the aggregation function.

Given the relationship between the Min(x) and Max(x) func-
tions and the order statistic functions (see Table 1), the notion of
conjunctivity and disjunctivity can be generalized to k-conjunctive (or
k-disjunctive) functions. For example, a k-conjunctive function remains
unchanged when any of the ordered components, x(k + 1), …, x(n) are
replaced with values greater than or equal to the kth smallest ordered
element, x(k). These types of functions can be used to ‘ignore’ the
upper n − k elements of an input vector.

1 Let x= (x1,…, xn) and y= (y1,…, yn) be vectors inℝn. The L1 norm of the difference
between x and y denoted ‖x− y‖1, is given by ‖x− y‖1 =∑i = 1

n |xi − yi| (also see Table 2
for a brief explanation of a norm).

Table 2
Continuity properties.

Property Definition Interpretation/Notes

Standard continuity F: I → ℝ, F is continuous at x0∈I if for every ε N 0 there exists δ N 0 such
that for all x∈Ijx−x0 jbδ⇒jF xð Þ−F x0ð Þjb ϵ

In essence, continuous functions have the property that small changes
in input values (|x − x′| b δ) will result in small changes in the output
values (|F(x) − F(x′)| b ε).

Lipschitz Continuity F : In→ℝ, F is Lipschitz continuous (with respect to the norm, || ⋅ ||)a with
Lipschitz constant c if |F(x) − F(x′)| ≤ c||x − x′|| for all x; x0∈In

With Lipschitz continuity, knowledge about variation in input values
(||x − x′||) can be used to give an exact bound for the variation in
output values. This differs from the definition of standard continuity
and is a stronger property. All Lipschitz continuous functions obey
(standard) continuity, but not all continuous functions are Lipschitz
continuous.

a A norm is used to convey a sense of distance between variables. With regards to indicator variable input, if x is the vector of true input values (without measurement error), and if x′
represents the actual indicator variable measurements (with measurement error), then the norm of two inputs, ||x− x′||, represents how different the true and measured values are (or
how much error is present in the actual measurements).
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An intuitive definition of an aggregation function includes themath-
ematical concept of internality2, given the prevalence of means and
averages in assessment aggregation. If non-compensatory aggregation
is sought in sustainability assessment, then further investigation of the
types of aggregation functions that are not internal is necessary (see
Grabisch et al., 2009, Chapter 3 for a treatment of conjunctive and dis-
junctive aggregation functions).

2.5. Example: Weak Versus Strong Sustainability and Internality

The concepts of weak and strong sustainability were introduced to
capture the idea that certain natural capital stocks are unique, essential,
and their loss could have irreversible effects on human well-being
(Pearce et al., 1994). An ‘overall capital stock’ approach that allows for
compensation between these unique, non-substitutable natural capital
stocks and capital stocks, not categorized as such, was deemed to fall
within a weak sustainability framework. A framework that respected
the non-substitutability of these natural stockswas deemed as adhering
to strong sustainability.

The concepts presented in Pearce et al. (1994) have since been used to
categorize sustainability assessments (Mori and Christodoulou, 2012;
Hacking and Guthrie, 2008; Mayer, 2008). A weak sustainability assess-
ment approach permits compensation of indicators across the three
pillars into a representative aggregate value. A strong sustainability
assessment, on the other hand, specifies that no aggregation of indicators
across the three pillars should be allowed during assessment (Mori and
Christodoulou, 2012). The link between compensation and aggregation
is substantial, since most aggregation functions used in practice are com-
pensatory. However, not all aggregation functions are compensatory,
allowing high values of inputs to offset low values of others. With this
in mind, the framing of weak versus strong sustainability may be seen
not necessarily as a matter of aggregation but more of compensation
within the aggregate output.

An example of how aggregation theory may be applied to give
a mathematical definition to weak versus strong sustainability is useful.
Assume that a ‘low’ value represents a nadir (or anti-ideal) state for a
given indicator, and a ‘high’ value represents an ideal state. Within a
strong sustainability assessment framework, for example, no low indi-
cator should offset a high economic or social indicator level and no
low social indicator should offset a high environmental or economic

indicator level, and so forth. Such compensatory effects, from an aggre-
gation theoretic perspective, fall under the set of properties related to
internality, conjunctivity, and disjunctivity. With this in mind, the
following definition is suggested:

Let Iienv; I
j
soc; Ikecon represent disjoint subsets of indicators containing

environmental, social, and economic indicators, respectively. Let Insust ¼
Iienv∪I jsoc∪Ikecon represent the entire set of sustainability indicators and
let F(x) be an aggregation function s.t. F : Insust→I, then:

Definition. An aggregation function F will satisfy strong sustainability
for any x∈Insust if F is conjunctive or disjunctive.

This definition states that only conjunctive or disjunctive aggrega-
tion functions will satisfy strong sustainability when acting on input
vectors that include components frommore than one of the three pillars
of sustainability.

With respect to the concept ofweak and strong sustainability, this ex-
ample can easily be extended to use different indicator categorizations.
For instance, as opposed to assuming that social, environmental, and
economic capital stocks are non-substitutable across the three pillars as
categories (and are completely substitutable within), one can utilize in-
dicator categorizations that identify the non-substitutable indicator
components specifically. This approach would enable moving beyond
the necessity of categorizing all indicators as being environmental, so-
cial, or economic, while still following the conceptual guidelines for
strong sustainability as presented in Pearce et al. (1994).

An interesting example of a function in the sustainability assessment
literature that can be either internal or conjunctive is provided by Díaz-
Balteiro and Romero (2004). The authors consider n systems being
assessed bym indicators. LettingWj be a weight, or relative importance
factor, for indicator j, andRi j represent the normalized value for system i
and indicator j, they propose the following index function, ISi:

ISi ¼ 1−λð Þ min
j

W jRi j

� �� �
þ λ

Xm
j¼1

W jRi j

where λ ∈ [0, 1] represents a compensation parameter. Notice that the
internality/conjunctivity of this function is controlled by the value of
the parameter λ. This function is a convex combination of the internal
function∑m

j¼1W jRi j, the weighted arithmetic mean, and the conjunctive

min j W jRi j

� �
function. In this case, any λ∈ (0, 1] will make the function

ISi internal; when λ = 0 the function ISi is conjunctive. Also, it can be
shown that ISi satisfies the formal conditions (see Section 2.1) of an
aggregation function.

Using the ISi function from Díaz-Balteiro and Romero (2004), a sim-
plified numerical example to emphasize the concepts presented is pro-
vided next. Consider a single bioenergy production site (i=1) that has
been assessed for environmental, social, and economic sustainability
(j = 3). Let xenv be the environmental sustainability score, let xsoc be
the social sustainability score, and let xecon be the economic sustain-
ability score and assume each value for these scores is on the scale
from 0 to 1 where 0 represents a non-ideal state, and 1 represents
an ideal sustainability state. If the overall sustainability of this site is to
be assessed using these scores and equalweighting of scores is assumed
(so W j ¼ 1

j ¼ 1
3), then ISi may be rewritten as:

ISi ¼ 1−λð Þmin xenv; xsoc; xeconf g þ λ
1
3

xenv þ xecon þ xsocð Þ
	 


:

Assume further that the systemhas the following assessment scores:
xenv = 0.8, xsoc = 0.33, xecon = 0.98. Assuming complete compensation
and substitutability between the three pillars, then λ = 0, and

ISi ¼ 0þ 1
1
3

0:8þ 0:33þ 0:98ð Þ
	 


¼ 0:703

2 The term internality used in this paper is purelymathematical, describing the behavior
of the aggregation function inmapping an input vector to an output value that falls within
the range of input component values. It is not related to the economic concept of imposi-
tion of costs as being internal or external that utilizes the same terminology.

Table 3
Internality, conjunctivity, and disjunctivity properties.

Property Definition Interpretation/notes

Conjunctive aF : In→ℝ; x∈In
F is conjunctive if
inf I≤ F xð Þ≤Min xð Þ

The output of the function F must be bounded
(above) by the Min(x) function. This condition
means that, in a conjunctive function, no low
input component can be compensated for by a
high input component.

Disjunctive F : In→ℝ; x∈In
F is disjunctive if
Max xð Þ≤ F xð Þ≤sup I

Similar to conjunctivity, but the output of the
function F must be bounded (below) by the
Max(x) function. Meaning that no low input
component values may compensate for a high
input component value.

Internal F : In→ℝ; x∈In
F is internal if
Min(x) ≤ F(x) ≤
Max(x)

Internal aggregation functions allow for
compensatory effects between input
component values. Here compensatory effects
are taken to mean those that allow, for
example, high input components to offset low
input components in the aggregate output.
Averages or mean aggregation functions are
internal functions.

a ℝ ¼ −∞;∞½ � represents the extended real line and I⊆ℝ.
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If the compensation parameter is set λ = 0, then no compensation
between the three pillars is assumed, and, in the aggregate, only the
minimum value will be used to represent the system, specifically,

ISi ¼ 1 min 0:8;0:33;0:98f gð Þ þ 0 ¼ 0:33

As the compensation parameter λ is varied between 1 and 0, ISi
increases (linearly) between the minimum value of the three and
their arithmetic mean. Through this example, one can see that the con-
cept of compensation between input values in an aggregation function
relates directly to the properties of internality, conjunctivity, and
disjunctivity of the aggregation function employed.

2.6. Grouping Based Properties

A key component of sustainability assessment is indicator identifica-
tion and categorization. Categorization of indicators takes place at mul-
tiple levels using a variety of attributes of the indicator variables. Once
categorization has occurred, this can lead to groups and subgroups of in-
dicators. An ideal assessment method allows investigators or policy
makers to both compress information when simplicity is demanded
and also control the aggregation to maintain acceptable levels of infor-
mation retained versus lost. Such a method may utilize aggregated
values of groups or categories of indicators to focus on particular dimen-
sions of the assessment. Additionally, this flexible assessment approach
may have aggregation taking placemultiple times and atmultiple levels
of the data structure, which can lead to inconsistent results depending
on the aggregation function chosen. Properties related to the behavior
of an aggregation function with respect to grouping and aggregation
at multiple levels is found in Table 4. The behavior of the aggregation
function with respect to the ordering of inputs (or groups of inputs) is
captured by symmetry related properties presented in Table 5. These
properties and behaviors are discussed below.

2.6.1. Properties Related to Aggregation at Multiple Levels
Repeated aggregation, or aggregation at multiple levels, is common

in sustainability assessment. It arises when aggregate values are used
to calculate other aggregate values. One example is when indices are
usedwithin indices. The inclusion of any biodiversity index as an indica-
tor in a further aggregate value is an exemplar. The Environmental
Sustainability Index calculation uses the National Biodiversity Index as an
indicator. More recently Dobbs et al. (2011) propose that Shannon di-
versity and evenness index be used as an indicator for urban forest eco-
system services and goods assessment (Esty et al., 2005; Dobbs et al.,

2011). Another example can be found in Gómez-Limón and Sanchez-
Fernandez (2010), where the risk of abandonment of agricultural activity
is an index included in their composite indicator of agricultural sustain-
ability. Themathematical properties of associativity and decomposability
(Table 4) are related to the behavior of function output with respect to
aggregation at multiple levels.

The definitions given in Table 4 use notation that may be unfamiliar.
To further decode the notation and what the definitionsmean, consider
the following example. Let {x1,…, x30} be a set of 30 sustainability indi-
cator variables to be aggregated. Where the first 5 indicator values,
{x1, …, x5} are all related to air quality, the next 10 are related to
water quality, {x6,..., x15} and the final 15 indicators, {x16, …, x30}
are related to soil quality. Let F be the aggregation function,
and let x = (x1, …, x5), x′ = (x6, …, x15), x″ = (x16, …, x30), so x∈
I5; x0∈I10; andx″∈I15. The aggregate value of the air, water, and soil
quality indicators individually is given by F(x), F(x′), and F(x″), re-
spectively. F(x, x′, x″) gives the total aggregate value for all indica-
tors, where F is now taking as input, these three vectors of different
dimensions, where the dimensions are related to number of indica-
tors in the different groupings of the total set of indicators. The
value, F(F(x), F(x′), F(x″)), may also be used to represent the total
aggregate value of all indicators. In this case, F is only taking 3
input values, namely, the three values found to represent each
group individually. The notation F : ∪n∈ℕIn→I indicates that our
aggregation function F needs to have the flexibility to take as input
arguments of varying numbers of indicators. And to reiterate, if it is
found that F(x, x′, x″) = F(F(x), F(x′), F(x″)), then the aggregation
function F is associative. If it is the case that F(x, x′, x″) =
F(5 ⋅ F(x), 10 ⋅ F(x′), 15 ⋅ F(x″)), then the aggregation function F is de-
composable (see Table 4).

To give specific examples of aggregation functionswith associativity
or decomposability as properties, ∏i xi and ∑i xi are associative, while
aggregation functions such as the arithmetic and geometric
mean, 1

n∑
n
i¼1xi and (∏i = 1

n xi)1\n are decomposable but not associa-
tive. The following example shows how inconsistency in aggregate
value output can arise if associativity and decomposability of the aggre-
gation function are ignored.

2.6.2. Example: Aggregation of Subsets of Indicators and Associativity
The larger the scope and the more data included in the assessment

can lead to aggregation taking place multiple times to produce assess-
ment results. In addition to the examples of indices within indices,
often, there is statistical analysis of replicates of data measurements
for a given indicator to produce a single representative measurement
for that indicator. Specifically,mean ormedian values of repeated indica-
tor measurements are often used to calculate a composite indicator
index rather than the raw data directly. The following example high-
lights how using a common aggregation function, the arithmetic mean,
may cause inconsistencies under two different approaches to find a rep-
resentative value for a data set.

Consider the following example using a simplified assessment
scenario of two indicators. Let x1 and x2 represent the indicators
and assume each indicator has multiple measurement observations.
Indicator x1 has been measured 5 times to give the following obser-
vations, (0.4,0.6,0.5,0.5,0.5). Indicator x2 has been measured 4
times, with observations of its measure as (0.1,0.1,0.3,0.3). If one is
interested in an aggregate value for either indicator x1 or x2 individ-
ually, then the arithmetic mean of themeasures of x1 is 0.5, and for x2
the arithmetic mean is of its measures is 0.2.

If a composite (or aggregate) value is sought for the two indicators x1
and x2 together, two approaches are:

Approach A. Aggregating the mean values of the measurements for
x1 and x2, 0.5 and 0.2, respectively. Using the arithmeticmean results
in an overall representative value of 0.35.

Table 4
Associativity and decomposability properties.

Property Definition Interpretation/notes

Associativity F : ∪n∈ℕIn→I
F is Associative if
F xð Þ ¼ x forallx∈I and if
F(x, x′) = F(F(x), F(x′))
for all x; x0∈∪n∈ℕIn

Associativity preserves the output
of an aggregation of n indicators
under the situation where first a
subset of k components (k b n) are
aggregated, then that output value
is aggregated with the rest of the
components.

Decomposability aF : ∪n∈ℕIn→I
F is Decomposable if
F xð Þ ¼ x forallx∈I and if
bF(x, x′) = F(k ⋅ F(x), k′ ⋅
F(x′)) for all k, k′
non-negative integers,

and x∈Ik; x0∈Ik
0

Decomposability is a similar
property to associativity but requires
knowledge of how many input
values, k and k′, the aggregate values
to be aggregated again contain.

a The notation,∪n∈ℕIn, is used to represent that the function F canmap input vectors of
varying number of arguments, n for any n ∈ ℕ, to the output interval I.

b The notation F k � F xð Þ; k0 � F x0ð Þ� � ¼ F F xð Þ;…; F xð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
k of these

; F x0ð Þ;…; F x0ð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
k0of these

 !
:
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Approach B. Aggregating all the measurement data to find the ar-
ithmetic mean of the entire list of measures for both indicators,
(0.5,0.4,0.6,0.5,0.5,0.1,0.1,0.3,0.3). Following this approach gives
an overall representative value of 0:366.

The inconsistency in results between approaches grows as the dis-
parity in the number of observedmeasures for each indicator increases.
For example, if indicator x1 is measured five additional times at a value
of 0.5, to give ten total observations, the arithmetic mean of the obser-
vations of x1 is still 0.5. Approach A yields the same overall result of
0.35 for indicators x1 and x2. However, Approach B, which reports the
arithmetic of all measurements for both indicators, yields an overall re-
sult of 0.41.

The discrepancy arising in the above example is because the arith-
metic mean is not associative. The arithmetic mean is, however, decom-
posable and therefore can be used consistently in the two different
approaches given in the example as long as the number of observed
measures used to arrive at the mean values of 0.5 and 0.2 are known
(see Table 4). The decomposability property applied to this circum-
stance gives that since five measures contribute to the mean value of
0.5 and fourmeasures contribute to themean value of 0.2, the aggregate
value of3 5 � 0:5;4 � 0:2ð Þ ¼ 0:5;0:5;0:5;0:5;0:5;0:2;0:2;0:2;0:2ð Þ will
be same as the aggregate value of (0.5,0.4,0.6,0.5,0.5,0.1,0.1,0.3,0.3)
using the arithmetic mean.

The assessment scenario just presented is abridged for clarity. How-
ever, variation in the number of measurements of different indicators is
a common occurrence, given the diversity of indicators included in sus-
tainability assessments and the differing measurement techniques that
accompany each indicator. This example highlights that if onewishes to
carry out further aggregations using aggregate values, then the group-
ing properties of aggregation functions becomes important in order to
arrive at consistent values.

2.6.3. Symmetry Properties
The order in which the indicators appear in the input vector may or

may not influence the aggregate value. Practically speaking, in the case
when equal weights are assumed among indicators, the ordering of in-
dicator appearance in the input vector should have no impact on the
output value. The dependence of aggregate output value on input
value ordering is captured by symmetry-related properties.

Symmetry is also extended to two-dimensional arrays, or matrices,
of indicator values. In this setting, the property of bisymmetry is used

to describe aggregate-value behavior under both varied grouping and
varied ordering to arrive at aggregate values. Specifically, one can con-
sider a set of indicator values organized in a n × n or n × p dimensional
matrix and ask if the total aggregate value is consistent with the aggre-
gate value found by first aggregating the rows and then the columns as
well as the value found by first aggregating the columns and then the
rows. This type of questionmight arisewhen considering a set of indica-
tors to be aggregated for multiple sites to arrive at a total aggregate
value for all sites.

To understand what symmetry of an aggregation function guaran-
tees, consider the following example for a three dimensional input
vector. Let x ¼ x1; x2; x3ð Þ∈I3 and A(x) be our aggregation function, if
A(x) is symmetric then A(x1, x2, x3) = A(x1, x3, x2) = A(x2, x1, x3) =
A(x2, x3, x1) = A(x3, x1, x2) = A(x3, x2, x1).

2.6.4. Example: Strong Bisymmetry and Multiple Site, Multiple Indicator
Aggregation

The final example provided in this section concerns the aggregation
of multiple indicators across multiple sites. For this example, consider
sustainability of a bioenergy production site as measured by n indi-
cators and p different production sites that are being assessed
using the same set of indicators. Let xi j∈I be the measure of indicator
i at some site j. For an aggregation function, F : ∪n∈ℕIn→I, let F⁎j =
F(x1j, x2j,..., xnj) be the aggregate value of all n indicators at site j,
and let Fi⁎ = F(xi1, xi2,..., xip) be the aggregate value of a single indicator,
i, at all p sites.

If a researcher is interested in finding one representative value for
the sustainability of the all the p production sites within the region,
they can follow different approaches:

Approach A. First aggregate a single indicator across all sites, and
then aggregate that value across indicators.
Approach B. First aggregate all indicators for a particular site, and
then aggregate those values for all sites.

The pertinent question is whether both approaches yield the same
overall output from the aggregation. Or, symbolically:

F F x11;…; xn1ð Þ;…; F x1p;…; xnp
� �� �

¼? F F x11;…; x1p
� �

;…; F xn1;…; xnp
� �� �

:

If the function used to carry out the aggregation is strongly
bisymmetric, then consistency is guaranteed. Otherwise, these two
approaches may result in different overall assessments of the all
the sites, using all the indicators, depending on the order in which
aggregation takes places.3 The notation (5·0.5,4·0.2) is defined in Table 5.

Table 5
Symmetry properties.

Property Definition Interpretation/notes

Symmetry F : In→ℝ
F is symmetric if
aF(x) = F([x]σ) for all x∈In and σ ∈ Σ[n]

Symmetry preserves the output of an aggregation of n indicators
under any permutation of the input components.

Bisymmetry F : In→ℝ
F is bisymmetric if
F(F(x11, … x1n),..., F(xn1,..., xnn)) = F(F(x11, … xn1),..., F(x1n,..., xnn)) for

all n × n square matrices
x11 ⋯ x1n
⋮ ⋱ ⋮

xn1 ⋯ xnn

0
@

1
A∈In�n

Within the matrix framework, bisymmetry ensures that the
output of the function being applied to the function values
determined by the row entries is equivalent to the output value
determined by the function being applied to the function values
determined by the column entries.

Strong bisymmetry F : ∪n∈ℕIn→I
F is strongly bisymmetric if
F xð Þ ¼ x forallx∈I and if for any n, p∈ ℕwe have F(F(x11,… x1n),…,
F(xp1, …, xpn)) = F(F(x11, … xp1), …, F(x1n, …, xpn)) for all p × n

matrices
x11 ⋯ x1n
⋮ ⋱ ⋮

xp1 ⋯ xpn

0
@

1
A∈Ip�n

Strong Bisymmetry extends the property of bisymmetry to
rectangular n × p matrices for n ≠ p.

a The notation, [x]σ represents a permutation, σ, of the components of the input variable, x. Σ[n] is used to denote the set of permutations of the n components.
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3. Invariant and Meaningful Aggregation Functions by Level
of Measurability

Given the variety of sustainability assessment approaches, develop-
ing procedures for the construction of aggregation methodologies adds
uniformity and rigor to the field of research. However, in order for ag-
gregation procedures to be derived, commonalities among the diverse
approaches must be identified.

Ebert and Welsch (2004) provide an excellent example. Their
work to define ameaningful environmental index is derived from con-
cepts of invariance and meaningfulness and has since been used as a
standard in the comprehensive evaluation of sustainability indices
in Böhringer and Jochem (2007) and Singh et al. (2009). More re-
cently, the work of Roberts (2014) discusses meaningfulness related
to landscape ecology and biodiversity measures. Ebert and Welsch
(2004) note that the topics of meaningfulness and invariance are
well-known in social choice theory, and Roberts has developed a body
of work discussing meaningfulness in relation to aggregation in multi-
ple scientific contexts.

Ebert andWelsch (2004) has its basis in the theory ofmeasurement.
The level of measurability or scale of measurability is a classification of a
given indicator variable based on the way in which the indicator can
be quantified4. The classic examples of levels of measurability for var-
iables are nominal, ordinal, interval, and ratio (Stevens, 1946). This
fundamental classification of indicator variables and the properties
associated with each level of measurability give rise to the concepts
of invariance and meaningfulness for a given scale of measurability.
After a brief introduction to the theory underlying the work of Ebert
and Welsch (2004), the rest of this section connects their work to
the larger context of aggregation functions, ending with examples in
which invariance and meaningfulness can be applied to the develop-
ment of sustainability assessment methodologies.

3.1. Admissible Transformations

Transforming variables between different units of measure is some-
thing that scientists often do.Whether it be fromU.S. customary units to
metric units for mass or length or from Celsius to Fahrenheit, these dif-
ferent units are seen as equivalent. However, when aggregation occurs
among these variables, inconsistencies can arise if the scales on which
they are measured are not taken into account.

3.1.1. Example: Inconsistent Aggregate Output Under Measurement Unit
Transformations

In the creation of a sustainability assessment tool, allowing for trans-
formation of data measurements between equivalent units, such as
inches to centimeters or parts permillion to parts per billion, is certainly
desirable. In this example, consider a researcher who is comparing two
different bioenergy production sites, site A and site B. The researcher
wishes to track the total impact of nitrogen (N) and phosphorus
(P) concentration in streams adjacent to the production site and then
focus mitigation efforts on the site with the larger loading of nitrogen
andphosphorus. Nitrogen concentrations are taken in units ofmilligram
per liter (mg/L) and phosphorus in centigram per liter (cg/L). Site A has
a nitrogen concentration of 0.970 mg/L and phosphorus concentration
of 0.0051 cg/L. Site B has a nitrogen concentration of 0.950 mg/L and
phosphorus concentration of 0.0082 cg/L.

The researcher calculates the arithmetic mean of nitrogen and phos-
phorus indicators and finds that site A has a value of (0.970+ 0.0051)/
2=0.488 and that site B has a value of (0.950+0.0082)/2=0.479. The
researcher concludes that site A has a higher aggregate value of nitrogen

and phosphorus loading than site B and thus focuses mitigation efforts
on site A.

Consider now that the researcher decides to record both phosphorus
and nitrogenmeasures using the sameunits,milligrams per liter. After a
quick change of units, phosphorus is now recorded as 0.0510 mg/L at
site A and 0.0820 mg/L at site B. The arithmetic means are taken again.
Site A has an aggregate value of (0.970 + 0.0510) / 2 = 0.511, while
site B has an aggregate value of (0.950 + 0.0820) / 2 = 0.516. The
researcher now concludes that site B has a higher aggregate value of
nitrogen and phosphorus loading than site A. The researcher is left with
a contradiction.

Bothmg/L and cg/L are ratio scalemeasurable units. The inconsistent
result shown in this example is due to changing between different
ratio scale measurable units while using the arithmetic mean to ag-
gregate. In order to ensure consistency under unit transformations
that are often taken for granted, measurability scale invariant trans-
formations need to be defined and aggregation functions identified
that respect those transformations. In this example, had an aggrega-
tion function been chosen that is meaningful on independent ratio
scales (the geometric mean for example), this inconsistent site ranking
would not have occurred.

3.2. Admissible Transformation Formulations by Scale of Measurability

Ordinal, interval, and ratio scale measurable data all appear in sus-
tainability assessments. Ordinal scale data represent a ranking or an
order, but differences between numbers do not have meaning. Many
surveys utilize ordinal scale measurable data. In recent research,
Kopmann and Rehdanz (2013) include Life Satisfaction measured on a
scale from 1 to 10 (where 1= very dissatisfied and 10= very satisfied)
in their human well-being approach to assess value of natural land
areas. Interval scale data are similar to an ordinal scale, except that dif-
ferences between data points are meaningful. Interval scale measurable
data also have arbitrary zero values that do not indicate the absence of
the measured variable. Temperature as measured in Celsius is a classic
example of interval scale measurement, since the difference be-
tween 20 and 21 degrees is the same as between 6 and 7, but 0 de-
grees does not represent the absence of temperature. Variables
measured on a ratio scale are similar to interval scale measurable
variables, except that the zero value is unique and non-arbitrary.
Many indicators used for sustainability assessment are ratio scale
measurable variables (see example in Section 3.3), such as bulk den-
sity measurements in soils andmeasurements of CO2 emissions from
a power plant over a given period of time. Besides nominal, ordinal,
interval, and ratio, additional scales of measurability have been de-
fined. Scales are also not fixed, as some data may be transformed be-
tween scales, temperature in Celsius (interval scale) to temperature
in Kelvin (ratio scale) is an example.

Each scale of measurability has its own set of transformations that
maintain the information contained in the data. Since the ordering or
ranking is the information stored by ordinal scale data, functions that
transform data on the ordinal-scale need to maintain that order. An
admissible transformation on the ordinal scale is of the form

x↦φ xð Þ; where φ isanystrictly increasingfunction: ð4Þ5

Interval scale measurable data have the same restriction as ordinal
scale data, but they must also maintain the distance between measure-
ments. An admissible transformation on the interval scale is of the form,

x↦ rxþ s; where r N 0ands∈ℝ: ð5Þ

4 One should be clear that scale of measurability of an indicator variable has no connec-
tion to the spatial or temporal extent to which a variable belongs. 5 A function F is strictly increasing if a b b ⇒ F(a) b F(b).
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For ratio scale measurable data, order, distance, and the unique zero
point must be maintained through transformations of the data. An
admissible transformation on the ratio scale is of the form

x↦ rx; where r N 0: ð6Þ

As an example to motivate consideration of admissible transforma-
tions, recall the Life Satisfaction ordinal response scale from 1 to 10,
where 1 = very dissatisfied and 10 = very satisfied, from Kopmann
and Rehdanz (2013). For simplicity, assume that there are 3 respon-
dents to this survey question and their responses are {1,9,3}. Here re-
spondent 1 is the least satisfied, respondent 2 is the most satisfied,
and respondent 3 is somewhere in between. Formulation (4) states
that in order to maintain the information in the response data, any
later transformation must be a strictly increasing function. Choosing
x∈ In as a simple example of a strictly increasing function, under
the use of φ, the responses are now transformed from 1;9;3f g→φ
2;18;6f g. Respondent 1 is still the least satisfied, respondent 2 the
most satisfied, and the transformed data set has the same rank order in
responses. If a function that is not strictly increasing was chosen, such

as φ̂ xð Þ ¼ x−5ð Þ2 then 1;9;3f g→φ̂ 16;16;4f g the result is that respon-
dents 1 and 2 are equally satisfied, and respondent 3 is the least satisfied;
the use of a non-strictly increasing function as a transformation has fun-
damentally changed the information contained within the data set.

3.2.1. Meaningfulness of Functions and Indices by Scale Type
Functions defined asmeaningful obey the principle that an admissi-

ble transformation of the input variable(s) should lead to an admissible
transformation of the output variable. This is known as Luce's principle
(Grabisch et al., 2009; Luce, 1959). Consider a function F, a set of input
variables, x = (x1, …, xn), a set of admissible transformations for input
variables, φ = (φ1, …, φn), and an admissible transformation for the
output variable with respect to the set of transformations for the input
variables,Ψφ.

A function F that satisfies the following equation:

F φ1 x1ð Þ; :: :;φn xnð Þð Þ ¼ Ψφ F x1; :: :;xnð Þð Þ ð7Þ

is defined to be meaningful (Grabisch et al., 2009).
Formulation (7) is themost general condition for ameaningful func-

tion given some set of admissible transformations. Each input variable,
xi, can be measured on a different scale of measurability, and the output
variable, F(x), can be measured on a scale different from all the xi. Each xi
can have its own class of admissible transformations, φi. The output var-
iable, F(x), can also have its own admissible transformation,Ψφ, different
from all the xi. Although abstract, Eq. (7) is used to derive the definitions
that are given in the next section. Additionally, the general case forwhich
all input variables and all output variables can be on any scale of measur-
ability has simplifications that are utilized in practice. From here out,
focus is placed on interval and ratio scales, and although similar results
exist for ordinal scale meaningful functions, those results are omitted6.

Simplifications exist to Eq. (7) that arise when input variables and
the output variable are measured on the same scales, or, in themost re-
strictive case, when variables are on the same scale and use the same
measurement units. Beginning with the assumption that all xi and F(x)
are on the same scale ofmeasurability (all ratio scalemeasurable for ex-
ample), Grabisch et al. (2009) focus on three simplifications. When all
input variables and output variables are measured on the same scale,
but none share identical units of measurement, this is termedmeaning-
ful on independent scales. For example, the scenario of aggregating 3 in-
dicators measured in parts per million (ppm), g/cm3, and temperature
in Kelvin, respectively, to arrive at an output variable that is measured
on a ratio scale different from all these three would be captured by
the termmeaningful on independent ratio scales. A further simplification

comeswhen input variables and the output variable aremeasured using
the same scale and all input variables share the exact same unit of mea-
surement. The term meaningful on a single scale is used to describe this
case. If one sought to aggregate input variables all measured in Fahren-
heit to an output variable measured in Celsius, a meaningful function in
this casewould be termedmeaningful on a single interval scale. The final,
and least general case, is when all the input and the output variables are
measured on the same scale and in the same units. The term invariant is
once again utilized to describe functions that are meaningful under this
circumstance. If one wished to meaningfully aggregate input variables
all measured in hectares to an output variable also measured in hect-
ares, then, since hectares are ratio scale measurable units, this would
be necessitate the use of a ratio scale invariant function. Although the
final circumstance is the least general derived using Eq. (7), it frequently
arises. When multiple samples are taken for a single indicator and ag-
gregated to find a representative value for that indicator, this circum-
stance applies. The mathematical formulations that accompany the
simplifications discussed in this paragraph for both ratio and interval
scale measurable variables are presented next.

Admissible transformations for ratio scale measurable variables are
classified in Eq. (6) above. Using this form of an admissible transforma-
tion, and the general form of meaningful functions presented in (7), the
following definitions arise when all input and output variables aremea-
sured on ratio scales:

A function F : In→ℝ is

Ratio scale invariant if for any r N 0,

F rxð Þ ¼ r F xð Þ ð8Þ

for all x∈ In such that rx∈ In.
Meaningful on a single ratio scale if for any r N 0, there exists R(r) N 0 such
that,

F rxð Þ ¼ R rð ÞF xð Þ ð9Þ

for all x∈ In such that rx∈ In.
Meaningful on independent ratio scales if for any r ∈ (0, ∞)n, there exists
R(r) such that,

F rxð Þ ¼ R rð ÞF xð Þ ð10Þ

for all x∈ In such that rx∈ In.

Admissible transformations for interval scale measurable variables
are classified in Eq. (5) above. Using this form for admissible transfor-
mations, and the general forms of meaningful functions from Eq. (7),
the following definitions arise for functions applied to interval scale
measurable input and output variables:

A function F : In→ℝ is

Interval scale invariant if for any r N 0 and s ∈ ℝ,

F rxþ s1ð Þ ¼ r F xð Þ þ s ð11Þ

for all x∈ In such that rxþ s1∈ In.
Meaningful on a single interval scale if for any r N 0 and any s ∈ ℝ, there
exists R(r, s) N 0 and S(r, s) ∈ ℝ such that

F rxþ s1ð Þ ¼ R r; sð ÞF xð Þ þ S r; sð Þ ð12Þ

for all x∈ In such that rxþ s1∈ In.6 For more about aggregation on ordinal scales see Grabisch et al. (2009), Chapter 8.

124 N. Pollesch, V.H. Dale / Ecological Economics 114 (2015) 117–127



Meaningful on independent interval scales if for any r ∈ (0, ∞)n and any
s ∈ ℝn, there exists R(r, s) and S(r, s) ∈ ℝ such that

rxþ sð Þ ¼ R r; sð ÞF xð Þ þ S r; sð Þ ð13Þ

for all x∈ In, such that rxþ s∈ In.
Although the definitions given above progress from least to most

general in terms of the types of input and output variables that are con-
sidered, it is not the case that a function being meaningful on indepen-
dent scales implies that the function is meaningful on a single scale or
that a function being meaningful on a single scale implies it is also in-
variant on the scale. The relationship that holds between the definitions
is that, if a function is scale invariant, it will also be meaningful on a
single scale, and, if a function is meaningful on independent scales, it
will also be meaningful on a single scale (Grabisch et al., 2009). With
the definitions and conditions formalized for meaningful and invariant
functions on given scales, the next section provides example functions
that satisfy the six meaningful definitions given above.

3.2.2. Meaningful Aggregation Functions
General results for functions that satisfy the definedmeaningfulness

and invariance equations have been studied for nearly three decades.
Results are available for all six of the different invariance and meaning-
fulness scenarios presented above, as well as others (Grabisch et al.,
2009; Aczél and Roberts, 1989; Aczél et al., 1986). Using slightly differ-
ent terminology, Ebert andWelsch (2004) present some of these results
in the context of defining theirmeaningful environmental index aswell.

Ebert and Welsch (2004) provided a derivation and examples of
ratio noncomparable, ratio full comparable, interval noncomparable,
and interval full comparable orderings that satisfy various forms of con-
tinuity and monotonicity. In their work, the term ‘noncomparable’ is
similar to the term independent in classifying scales of input and output
variables. Themeaning of the term ‘full comparable’ is similar to the use
of theword single above. The results of their paper have since been sim-
plified and presented in the form of a compact table, which is given in
Table 6 (Böhringer and Jochem, 2007).

If focusing on aggregation functions, then one only needs to consider
functional forms that satisfy the different meaningful and invariance
properties above and that are nondecreasing and fulfill the boundary
conditions provided in Eq. (1). In doing so, nearly identical results
arise as to those presented in Ebert and Welsch (2004). Table 7 is
adapted from Grabisch et al. (2009) and presents aggregation functions
that satisfy the different meaningfulness properties discussed thus far.

Grabisch et al. (2009) also provide deeper results formeaningfulness
with respect to ratio and interval scale measurable variables than just
examples of functions that satisfy different meaningfulness properties.
Their results give complete descriptions for the types of aggregation
functions that satisfy meaningfulness on independent scales for ratio
(Eq. (10)) and interval (Eq. (13)) scale measurable variables.

3.2.2.1. Meaningful Aggregation Functions on Independent Ratio Scales
Proposition 7.8 (Grabisch et al., 2009). 7Let I ¼ 0; bj jwith b∈ (0, ∞]. A

function F : In↦I is a meaningful aggregation function on independent
ratio scales if and only if

F xð Þ ¼ a∏
n

i¼1
xaii ð14Þ

where a1, …, an ∈ [0, ∞), ∑i = 1
n ai N 0 and a N 0 if b = ∞, while a ¼ b

∏n
i¼1b

−ai if b b ∞.

3.2.2.2. Meaningful Aggregation Functions on Independent Interval Scales
Proposition 7.34 (Grabisch et al., 2009). An aggregation function

F : In↦I is meaningful on independent interval scales if and only if

F xð Þ ¼ cxi þ d ð15Þ

for some i, where c N 0 and d∈ℝ satisfy ca+ d= a, cb+d= bwhere
a ¼ inf I; b ¼ sup I:

The major results of Ebert andWelsch (2004) are echoed in Table 7
and Propositions 7.34 and 7.8 from Grabisch et al. (2009). Specifically,
Grabisch et al. (2009) give that, for Eq. (15), these solutions for mean-
ingful aggregation functions on independent interval scales contained
within bounded intervals are projections onto a single coordinate,
Pk(x) (all indicator variables will be contained in bounded intervals).
Further, Pk(x) may be seen as a dictatorial ordering, which is the termi-
nology used by Ebert and Welsch (2004), because one chooses a single
input element xk to represent the rest of the input values by. The
geometric mean and weighted geometric means are the only example
aggregation functions that satisfy all three of the ratio scalemeaningful-
ness properties; these clearly fit under the categorization of Eq. (14).
Pk(x) is the only example of an aggregation function that satisfies all
six of the invariance and meaningfulness properties for interval and
ratio scale measurable variables.

3.3. Application of Meaningfulness Properties to Sustainability Assessment

In order to apply successfully the invariance properties to develop
an aggregation strategy, a proper classification of what measurability
scenario exists for the chosen indicators is crucial. This necessitates
categorization of the indicator variables included in the sustainability
assessment into their scales of measurability. It further demands an un-
derstanding of how measurability scales change through any normali-
zation or rescaling process.

Within sustainability assessment, one might encounter any of the
meaningfulness or invariance scenarios presented above. Ratio scale
measurable variables are common among indicator variables, since
many scientific quantities fall on this scale naturally. As an example,
Table 8 contains the list of recommended environmental sustainability
indicator variables for assessing bioenergy sustainability as provided
by McBride et al. (2011), and 18 out of the 19 indicators are ratio scale
measurable. The indicators are from diverse categories such as air, soil,

Table 6
Aggregation rules for variables by Ebert and Welsch via?

Noncomparable Full comparable

Interval scale Dictatorial ordering Arithmetic mean
Ratio scale Geometric mean Any homothetic function

Table 7
Meaningfulness of common aggregation functions adapted from?

Aggregation function R.S.I. S.R.S. I.R.S. I.S.I. S.I.S. I.I.S.

Arithmetic mean ✓ ✓ ✓ ✓

Geometric mean ✓ ✓ ✓
aPk(x) := xk ✓ ✓ ✓ ✓ ✓ ✓
bOSk(x) := x(k) ✓ ✓ ✓ ✓

Weighted arithmetic mean ✓ ✓ ✓ ✓

Weighted geometric mean ✓ ✓ ✓

Ordered weighted average ✓ ✓ ✓ ✓

∑i = 1
n xi ✓ ✓ ✓

∏i = 1
n xi ✓ ✓

Ratio scale invariant (R.S.I.), meaningful on a single ratio scale (S.R.S.) meaningful on indepen-
dent ratio scales (I.R.S.), interval scale invariant (I.S.I), meaningful on a single interval scale
(S.I.S.), and meaningful on an independent interval scales (I.I.S).

a Pk(x) is the projection onto the kth element, xk of the input vector x.
b OSk(x) is the projection on the kth ordered element, x(k) of the input vector x (All other

function definitions may be found in Table 1).7 The notation |0, b| represents any real interval with endpoints 0 and b.
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and water quality, water quantity, greenhouse gas emissions as well as
productivity and biodiversity.

Within some categories, such as soil and water quality, many of the
variables aremeasured on the same scale in the same units, for example
indicators 1–3 are all measured in Mg/ha, and indicators 5–8 are all
measured inmg/L and kg/ha/year. This consistency allows one to utilize
ratio scale invariant functions for aggregation within those particular
groups. However, it may be simplest to choose a function that is mean-
ingful on independent ratio scales, for then any aggregation on 18 of 19
indicator variables may be carried out using the same function. In the
McBride et al. (2011) example, ratio scales dominate. Also, normaliza-
tion procedures can produce measures on relative scales that are also
ratio scale measurable.

Many sustainability assessment researchers argue that normali-
zation by using a distance-to-target method is an appropriate way
to deal with variables that reside on different scales of measurability
(Mayer, 2008; Moldan et al., 2012). When it comes to normalized or
relative values, Grabisch et al. (2009) point to the work of Roberts
(1994) as identifying functions of the form given in Eq. (14) as ap-
propriate aggregation functions on these scales. However, with re-
spect to normalization, Ebert and Welsch (2004) contend that
normalization introduces further ambiguities to the system when
there are arbitrary normalization rules. They go on further to say
that if one simply used unnormalized data measures that are on in-
dependent ratio scales, a meaningful environmental index would re-
sult by using a geometric mean as the aggregation function. Whether
or how to normalize indicators is indeed something that varies by
project, and, in either case, as long as one understands the scale of
measurability on which the raw or normalized indicators fall, mean-
ingful aggregation functions can be identified and used. Because of
the importance of normalization as it relates to aggregation as well
as to the assessment as a whole, the authors of this paper are inves-
tigating implications of aggregation theoretic properties as they re-
late to common normalizations procedures found in sustainability
assessments.

Flexibility for assessing sustainability in different contexts is en-
hanced by defining site specific baselines and targets for distance-to-
target normalization. If the same baselines and targets are set for all
sites, then the normalized variables can be aggregated in a meaningful
fashion using a ratio-scale invariant function. However, in a scenario
where normalization using distance-to-target is used and each site has
its own baselines and targets, the normalized variables no longer fall

on identical scales, and so ratio scale invariant functions are no longer
appropriate. This result occurs because, when different baselines and
targets are used, a per unit change in the indicator at one site corre-
sponds to a different change in the normalized variable than a per unit
change in the same indicator at a different site. This observation high-
lights that even slightly different normalization by site has the ability
to change the scales for identical indicators, and an aggregation function
that is meaningful on independent ratios scales is needed for the nor-
malized values from different sites.

4. Conclusion

Sustainability assessments are often complex, utilizing high-
dimensional data sets and multifaceted analyses of the diverse indi-
cator data. Aggregation is a key component in many sustainability
assessments and a step that has large impact on the outcome of
assessment results. To build upon the existing guidance for the con-
struction of sustainability assessments, this paper introduces
mathematical concepts that can be used to bolster the rigor and con-
sistency of the aggregation component within the assessment. The
concepts presented draw mostly from the mathematical study of
aggregation functions, for which Grabisch et al. (2009) provide an
excellent resource. Beyond the presentation and justification of rel-
evant mathematical properties of aggregation functions, examples
provide context and motivation for further investigation into this
branch of mathematics that can be used in sustainability assess-
ment. The paper concludes with a discussion of the work of Ebert
and Welsch (2004) and meaningful indices and aggregation func-
tions. It is shown that meaningful aggregation can take place using
a variety of aggregation functions, depending on the scale in which
the indicator variables are measured. Whether indicator data are
normalized or not, meaningful aggregation functions can be defined
and utilized for the synthesis and compression of high-dimensional
assessment data.

As new sustainability assessments are constructed and existing
assessment utilized, this paper should provide deeper understand-
ing of how inconsistencies can arise in sustainability assessment in
relation to the aggregation function(s) utilized. The properties of ag-
gregation functions presented are by no means exhaustive and were
chosen due to their particular relevance and to raise awareness of
opportunities to introduce mathematical rigor within sustainability
assessment.

Table 8
Recommended environmental indicators for bioenergy sustainability with measurability scales adapted from?

Category Indicator Units Measurability scale

Soil quality 1. Total organic carbon (TOC) Mg/ha Ratio scale
2. Total nitrogen (N) Mg/ha Ratio scale
3. Extractable phosphorus (P) Mg/ha Ratio scale
4. Bulk Density g/cm3 Ratio scale

Water quality and quantity 5. Nitrate concentration in streams (and export) Concentration: mg/L; export: kg/ha/year Ratio scale; ratio scale
6. Total phosphorus (P) concentration in streams (and export) Concentration: mg/L; export kg/ha/year Ratio scale; ratio scale
7. Suspended sediment concentration in streams (and export) Concentration: mg/L; export kg/ha/year Ratio scale; ratio scale
8. Herbicide concentration in streams (and export) Concentration: mg/L; export kg/ha/year Ratio scale; ratio scale
9. Peak storm flow L/s Ratio scale
10. Minimum base flow L/s Ratio scale
11. Consumptive water use (incorporates base flow) Feedstock production: m3/ha/day; bioenergy: m3/day Ratio scale; ratio scale

Greenhouse gases 12. CO2 equivalent emissions (CO2 and N2O) kg Ceq/GJ Ratio scale
Biodiversity 12. Presence of taxa of special concern Presence a

14. Habitat area of taxa of special concern ha Ratio scale
Air quality 15. Tropospheric ozone ppb Ratio scale

16. Carbon monoxide ppm Ratio scale
17. Total particulate matter less than 2.5 μm diameter (PM2.5) μg/m3 Ratio scale
18. Total particulate matter less than 10 μm diameter (PM10) μg/m3 Ratio scale

Productivity 19. Aboveground net primary productivity (ANPP)/yield g C/m2/year Ratio scale

a Due to variation of habitat for species of special concern in different contexts, this indicator does not have specified units of measurement.
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