Skip to main content

DOE

Short Rotation Woody Crop Production Scenarios Simulated for Idaho National Laboratory-ORNL Collaborations, June 2021.

Contact Phone
Usage Policy
Please use the citation
Publication Date
Organization
Lab
Contact Email
davismr@ornl.gov
DOI
10.11578/1797939
Data Source
Budgets are consistent with BT16 (DOE 2016) and Pine/Poplar allocation used the highest yield for those crops from https://public.tableau.com/app/profile/eatonlm/viz/SGI_yields/PotentialYieldOverview
Contact Person
Maggie Davis
Contact Organization
Oak Ridge National Lab
Author(s)
Maggie R. Davis

This workshop examines the potential benefits, feasibility, and barriers to the use of biofuels in place of heavy fuel oil (HFO) and marine gas oil for marine vessels. More than 90% of world’s shipped goods
travel by marine cargo vessels powered by internal combustion (diesel) engines using primarily low-cost residual HFO, which is high in sulfur content. Recognizing that marine shipping is the largest source of
anthropogenic sulfur emissions and is a significant source of other pollutants including particulates, nitrogen oxides, and carbon dioxide (CO2), the International Maritime Organization enacted regulations to
lower the fuel sulfur content from 3.5 wt.% to 0.5 wt.% in 2020. These regulations require ship operators either to use higher-cost, low-sulfur HFO or to seek other alternatives for reducing sulfur emissions (i.e.,
scrubbers, natural gas, distillates, and/or biofuels). The near-term options for shipowners to comply with regulations include fueling with low-sulfur HFO or distillate fuels or installing emissions control systems.
However, few refineries are equipped to produce low-sulfur HFO. Likewise, the current production rates of distillates do not allow the necessary expansion required to fuel the world fleet of shipping vessels
(which consume around 330 million metric tons). This quantity is more than twice that used in the United States for cars and trucks. The other near-term option is to install emission control systems, which also
requires a significant investment. All of these options significantly increase operational costs. Because of such costs, biofuels have become an attractive alternative since they are inherently low in sulfur and
potentially also offer greenhouse gas benefits. Based on this preliminary assessment, replacing HFO in large marine vessels with minimally processed, heavy biofuels appears to have potential as a path to
reduced emissions of sulfur, CO2, and criteria emissions. Realizing this opportunity will require deeper knowledge of (1) the combustion characteristics of biofuels in marine applications, (2) their compatibility
for blending with conventional marine fuels (including HFO), (3) needs and costs for scaling up production and use, and (4) a systems assessment of their life cycle environmental impacts and costs. It is
recommended that a research program investigating each of these aspects be undertaken to better assess the efficacy of biofuels for marine use.

Keywords
Publication Date
Organization
Lab
Bioenergy Category
Author(s)
Mike Kass , Zia Abdullah , Mary Biddy , Corinne Drennan , Troy Hawkins , Susanne Jones , Johnathan Holladay , Dough Longman , Emily Newes , Tim Theiss , Tom Thompson , Michael Wang
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Contact information about the submitter of this metadata record:
Author list: Maggie Davis, Matt Langholtz, Laurence Eaton, Chad Hellwinkel
Who should be contacted with questions relating to the data? (Principal investigator or primary developer of data product): Maggie Davis, davismr@ornl.gov

What format is your data presented in? .csv .xls
Date data created 1/26-29/2016
Please include a description of the data set (abstract):
As part of the Billion Ton resource assessment projections created in 2016 (see https://www.energy.gov/sites/prod/files/2016/12/f34/2016_billion_ton_re…), this dataset was produced and titled a "base-case" scenario. This broader dataset provided an updated assessment of the potential economic availability of biomass resources from agricultural lands reported at the farmgate under conservative assumptions. Crop residues quantified in this dataset include corn stover, cereal (wheat, oats, and barley) straws, and sorghum stubble. We have isolated corn stover in this dataset.

What is the purpose of the data set? Why were the data collected?*
Per request for use in subsequent research, we have isolated corn stover in 2019 from the broader base-case projections and have provided tillage classification details from this projection. Tillage classification assumptions in this scenario allow a moderate deviation from a baseline situation (using historic CTIC data on tillage type used in counties for each crop). This dataset allowed moderate flexibility of farmers to put land into another tillage type (no till, conservation till, and reduced till) where a higher net present value was calculated.

Were data created or processed with a model or other analytical tool? Yes
Version POLYSYS v10_1-22-16b
Assumptions: Cumulative (energy crops and residues). Base-case (1% yield growth scenario), Tillage Flex = 1, across offered prices of $40-$60 in $5 increments from 2015 to 2040.

Should other organizations/individuals get credit for support, funding, or data collection and analysis? Yes, the USDOE BioEnergy Technologies Office (BETO) and the Oak Ridge National Laboratory (ORNL)

Contact Phone
Publication Date
Organization
Lab
Contact Email
davismr@ornl.gov
DOI
10.11578/1632327
Contact Person
Maggie R. Davis
Contact Organization
ORNL
Bioenergy Category
Author(s)
Maggie Davis , Matt Langholtz , Laurence Eaton , Chad Hellwinkel
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Perennial grasses are touted as sustainable feedstocks for energy production. Such benefits, however, may be offset if excessive nitrogen (N) fertilization leads to economic and environmental issues. Furthermore, as yields respond to changes in climate, nutrient requirements will change, and thus guidance on minimal N inputs is necessary to ensure sustainable bioenergy production. Here, a pairwise meta-analysis was conducted to investigate the effects of N fertilization (amount and duration) and climate on the above-ground biomass yields of miscanthus (Miscanthus x giganteus) and switchgrass (Panicum virgatum L.). Both regression models and meta-analyses showed that switchgrass was more responsive to N than miscanthus, although both showed significant and positive N effects. Meta-analysis further showed that the positive growth response of miscanthus to N application increased with N addition rates of 60–300 kg N ha−1 year−1, but the magnitude of the response decreased with the number of years of fertilization (duration). N effects on switchgrass biomass increased and peaked at rates of 120–160 kg N ha−1 year−1 and 5–6 years of N inputs, but diminished for rates >300 kg N ha−1 year−1 and >7 years. Meta-analysis further revealed that the influences of N on switchgrass increased with both mean annual temperature and precipitation. Miscanthus yields were less responsive to climate than switchgrass yields. This meta-analysis helps fill a gap in estimation of biofeedstock yields based on N fertilization and could help better estimate minimum N requirements and soil management strategies for miscanthus and switchgrass cultivation across climatic conditions, thereby improving the efficiency and sustainability of bioenergy cropping systems.

    Publication Date
    Organization
    Lab
    DOI
    https://doi.org/10.1016/j.rser.2019.03.037
    Contact Person
    Huaihai Chen
    Contact Organization
    Oak Ridge National Laboratory
    Bioenergy Category
    Author(s)
    Huaihai Chen , Zhongmin Dai , Henriette I. Jager , Stan D. Wullschleger , Jianming Xu , Christopher W. Schadt
    Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

    Sustainable production of algae will depend on understanding trade-offs at the energy-water nexus. Algal biofuels promise to improve the environmental sustainability profile of renewable energy along most dimensions. In this assessment of potential US freshwater production, we assumed sustainable production along the carbon dimension by simulating placement of open ponds away from high-carbon-stock lands (forest, grassland, and wetland) and near sources of waste CO 2 . Along the water dimension, we quantified trade-offs between water scarcity and production for an ‘upstream’ indicator (measuring minimum water supply) and a ‘downstream’ indicator (measuring impacts on rivers). For the upstream indicator, we developed a visualization tool to evaluate algae production for different thresholds for water surplus. We hypothesized that maintaining a minimum seasonal water surplus would also protect river habitat for aquatic biota. Our study confirmed that ensuring surplus water also reduced the duration of low-flow events, but only above a threshold. We also observed a trade-off between algal production and the duration of low-flow events in streams. These results can help to guide the choice of basin-specific sustainability targets to avoid conflicts with competing water users at this energy-water nexus. Where conflicts emerge, alternative water sources or enclosed photobioreactors may be needed for algae cultivation.

    Publication Date
    Organization
    Lab
    DOI
    https://doi.org/10.3390/w11040836
    Contact Person
    Henriette I. Jager
    Contact Organization
    Oak Ridge National Laboratory
    Bioenergy Category
    Author(s)
    Henriette I. Jager , Rebecca A. Efroymson , Latha M. Baskaran
    Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

    Practicing agriculture decreases downstream water quality when compared to non-agricultural lands. Agricultural watersheds that also grow perennial biofuel feedstocks can be designed to improve water quality compared to agricultural watersheds without perennials. The question then becomes which conservation practices should be employed and where in the landscape should they be situated to achieve water quality objectives when growing biofuel feedstocks. In this review, we focused on four types of spatial decisions in a bioenergy landscape: decisions about placement of vegetated strips, artificial drainage, wetlands, and residue removal. The appropriate tools for addressing spatial design questions are optimizations that seek to minimize losses of sediment and nutrients, reduce water temperature, and maximize farmer income. To accomplish these objectives through placing conservation practices, both field-scale and watershed-scale cost and benefits should be considered, as many biophysical processes are scale dependent. We developed decision trees that consider water quality objectives and landscape characteristics when determining the optimal locations of management practices. These decision trees summarize various rules for placing practices and can be used by farmers and others growing biofuels. Additionally, we examined interactions between conservation practices applied to bioenergy landscapes to highlight synergistic effects and to comprehensively address the question of conservation practice usage and placement. We found that combining conservation practices and accounting for their interactive effects can significantly improve water quality outcomes. Based on our review, we determine that by making spatial decisions on conservation practices, bioenergy landscapes can be designed to improve water quality and enhance other ecosystem services.

      Publication Date
      Organization
      Lab
      Contact Email
      jkreig@vols.utk.edu
      DOI
      https://doi.org/10.1016/j.biombioe.2019.105327
      Contact Person
      Jasmine A.F. Kreig
      Contact Organization
      University of Tennessee
      Bioenergy Category
      Author(s)
      Jasmine A.F. Kreig , Herbert Ssegane , Indrajeet Chaubey , Maria C. Negri , Henriette I. Jager
      Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

      The economic potential for Eucalyptus spp. production for jet fuel additives in the United States: A 20 year projection suite of scenarios ranging from $110 Mg-1 to $220 Mg-1 utilizing the POLYSYS model.

      Contact Phone
      Publication Date
      Project Title
      The economic potential for Eucalyptus spp. production for jet fuel additives in the United States
      Organization
      Lab
      Contact Email
      davismr@ornl.gov
      Contact Person
      Maggie R. Davis
      Contact Organization
      ORNL
      Author(s)
      Maggie R. Davis

      Logging and mill residues are currently the largest sources of woody biomass for bioenergy in the US, but short-rotation woody crops (SRWCs) are expected to become a larger contributor to biomass production, primarily on lands marginal for food production. However, there are very few studies on the environmental effects of SRWCs, and most have been conducted at stand rather than at watershed scales. In this manuscript, we review the potential environmental effects of SRWCs relative to current forestry or agricultural practices and best management practices (BMPs) in the southeast US and identify priorities and constraints for monitoring and modeling these effects. Plot-scale field studies and a watershed-scale modeling study found improved water quality with SRWCs compared to agricultural crops. Further, a recent watershed-scale experiment suggests that conventional forestry BMPs are sufficient to protect water quality from SRWC silvicultural activities, but the duration of these studies is short with respect to travel times of groundwater transporting nitrate to streams. While the effects of SRWC production on carbon (C) and water budgets depend on both soil properties and previous land management, woody crops will typically sequester more C when compared with agricultural crops. The overall C offset by SRWCs will depend on a variety of management practices, the number of rotations, and climate. Effects of SRWCs on biodiversity, especially aquatic organisms, are not well studied, but a meta-analysis found that bird and mammal biodiversity is lower in SRWC stands than unmanaged forests. Long-term (i.e., over multiple rotations) water quality, water use, C dynamics, and soil quality studies are needed, as are larger-scale (i.e., landscape scale) biodiversity studies, to evaluate the potential effects of SRWC production. Such research should couple field measurement and modeling approaches due to the temporal (i.e., multiple rotations) and spatial (i.e., heterogeneous landscape) scaling issues involved with SRWC production.

      Contact Phone
      Publication Date
      Project Title
      Short-rotation woody biomass sustainability
      Organization
      Lab
      Contact Email
      griffithsna@ornl.gov
      DOI
      10.1111/gcbb.12536
      Contact Person
      Natalie Griffiths
      Contact Organization
      Oak Ridge National Laboratory
      Bioenergy Category
      Author(s)
      Natalie A. Griffiths , Benjamin M. Rau , Kellie B. Vache , Gregory Starr , Menberu M. Bitew , Doug P. Aubrey , James A. Martin , Elizabeth Benton , C. Rhett Jackson
      WBS Project Number
      4.2.2.41
      Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

      The objective of this research project was to assess whether standard forestry best management practices (BMPs) are sufficient to protect stream water quality from intensive silviculture associated with short-rotation woody crop (SRWC) production for bioenergy. Forestry BMPs are designed to prevent the movement of deleterious quantities of nutrients, herbicides, sediments, and thermal energy (sunlight hitting stream channels) from clear-cuts and plantations to surface waters. Until now, there have been no watershed-scale studies examining the effectiveness of traditional forestry BMPs as applied to SRWC production for bioenergy. The demand for woody bioenergy feedstocks is expected to increase, especially in the southeastern United States where the climate, topography, and land ownership are favorable for wood production. Therefore, it is important to evaluate the environmental effects of SRWC production for bioenergy and the efficacy of BMPs.

      This study used a watershed-scale experiment in a before-after, control-impact design to examine the environmental effects of short-rotation loblolly pine (Pinus taeda) production for bioenergy and evaluate the efficacy of BMPs for protecting surface water quality. Environmental measurements included water and soil quality (i.e., nitrogen, phosphorus, suspended solid, pesticide concentrations in water, nitrate leaching, nitrogen mineralization, denitrification, ecosystem nitrogen budget, conservative tracer modeling), hydrology (i.e., overland flow and concentrated flow tracks, interflow [shallow lateral subsurface flow], groundwater dynamics), and productivity and stand-level ecophysiology (i.e., tree growth, carbon, water, and energy fluxes). Most of these environmental metrics were measured before (for ~2 years) and after (for ~6 years) harvest, planting, and managing short-rotation loblolly pine for bioenergy on more than 50% of the land area in two treatment watersheds and also in one mature timber reference watershed. The three study watersheds are located in the Upper Fourmile Creek watershed at the Savannah River Site in South Carolina. All silviculture practices in the two treatment watersheds followed South Carolina Forestry BMPs (e.g., minimized soil compaction and bare ground exposure; inhibited hydraulic connections between bare ground and surface waters; provided forested buffers around streams).

      The silvicultural plan used in the watershed-scale experiment was designed to achieve high yields of loblolly pine over a short rotation (10–12 green tons/acre/year at 10–12 years), and we intentionally pushed the system in terms of high rates of fertilizer applied. Tree growth and net ecosystem exchange (carbon flux) data demonstrated that the objective of accelerating growth was achieved. In the fourth growing season, aboveground biomass of trees averaged 12,000 kg/ha and carbon sequestration was 466 g C/m2/y. The carbon sequestration rate of the loblolly pine was 1–8 years ahead of conventional southern pine stands grown for pulp production. However, our plot-scale study that manipulated levels of fertilizer and herbicide applications found that the most efficient production system based on the ecosystem N budget was a silvicultural treatment of herbicide without fertilizer; tree growth was 90% of that achieved with operational-scale fertilizer additions and nitrate leaching was lower than in the fertilized treatments. At the operational (watershed) scale, only 30–60% of the nitrogen applied in fertilizers was sequestered in pine after the fourth growing season. Overall, some components of the silvicultural treatments were efficient (i.e., early control of competing plants) and some aspects were not (i.e., early fertilization). These results suggest that nitrogen fertilizers were applied in excess in the first three years and highlight the importance of evaluating water quality responses and efficacy of BMPs under these intensive silvicultural applications.

      Despite the high fertilizer applications in the watershed-scale experiment, there were minimal effects of SRWC production on stream water quality, suggesting that forestry BMPs appear to be effective at protecting surface waters. However, nitrate concentrations were elevated in shallow subsurface flow (interflow) and in concentrated flow tracks. Nitrate concentrations also increased in groundwater following harvest and the first fertilizer application. The highest nitrate concentrations measured in groundwater were <2 mg N/L, which is below the US Environmental Protection Agency regulatory limit of 10 mg N/L. These low-gradient watersheds are dominated by groundwater flow paths, and there are several lines of evidence suggesting that some of the elevated nitrate in groundwater should have reached the streams during the 6-year-long posttreatment monitoring period. Groundwater modeling suggests that although transport times to the stream might be on the order of a decade, transport from near-stream portions of the plantations are shorter (1–3 years). Conservative (i.e., non-reactive) tracer modeling also suggests that nitrate concentrations would be elevated in streams following the silvicultural treatments if nitrate travelled conservatively (i.e., nitrate is not taken up or transformed along the groundwater flow path). Estimates of denitrification suggest that this microbial process is important in removing nitrate in groundwater both in the sandy upland areas and in the organic-rich riparian zones (streamside management zones) that are characteristic of this region. Overall, the magnitude of these processes suggests that BMPs in these low-gradient, Coastal Plain watersheds are sufficiently robust to mitigate a relatively low nitrogen fertilizer use efficiency. Phosphorus-based fertilizers were also applied as part of the watershed-scale study, but there were no changes in soluble reactive phosphorus concentrations in stream or groundwater, likely because phosphorus is much less mobile than nitrate and the subsoils contain clays that bind phosphorus.

      Aside from fertilizer fate, other important water quality parameters are the fate of applied pesticides and the transport of sediments and associated nutrients to streams. We found little evidence of pesticide movement as none of the stream water samples collected posttreatment had detectable levels of pesticides. The pesticides applied in this study are commonly used in southeastern US silvicultural operations and have low mobility and are moderately persistent. We also found very little evidence of sediment transport to streams via overland flow. Concentrated flow track surveys found that the most likely path of solutes by overland flow was from variable source areas that expanded into the plantations during periods with elevated water tables. The greatest sediment input was from an interior ditch of a paved road and was unrelated to silvicultural management of the site. There were no effects of SRWC production on total nitrogen, phosphorus, or suspended solid concentrations in stream water. Therefore, forestry BMPs were effective with respect to pesticide applications, and overland flow and associated sediment transport.

      Overall, the lack of effect of short-rotation loblolly pine production for bioenergy on stream water quality suggests that current forestry BMPs are effective at protecting surface waters in the Coastal Plain landscape even with high levels of fertilization and herbicide application associated with SRWC production. These results should be applicable throughout the southeastern Coastal Plain, in watersheds that are characterized by low-gradient uplands with sandy soils and organic-rich riparian zones. Hydrologic processes in the Piedmont differ sufficiently from those in the Coastal Plain that caution should be used when extrapolating these findings to the Piedmont.

      Contact Phone
      Publication Date
      Project Title
      Short-rotation woody biomass sustainability
      Organization
      Lab
      Contact Email
      griffithsna@ornl.gov
      Contact Person
      Natalie Griffiths
      Contact Organization
      Oak Ridge National Laboratory
      Bioenergy Category
      Author(s)
      Natalie A. Griffiths , C. Rhett Jackson , John I. Blake , Johnson Jeffers , Benjamin M. Rau , Gregory Starr , Kellie Vache
      WBS Project Number
      4.2.2.41
      Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

      The goal of this repository is to promote transparency and ease-of-access to the U.S. Department of Energy Bioenergy Technologies Office (BETO) supported public studies involving techno-economic analysis (TEA). As such, this database summarizes the economic and technical parameters associated with the modeled biorefinery processes for the production of biofuels and bioproducts, as presented in a range of published reports and papers. The database serves as a quick reference tool by documenting and referencing the results of techno-economic analyses from the national laboratories and in peer-reviewed journals.
       
      The analyses presented in this database may be distinguished in several regards, such as cost year, feedstock cost, and financial assumptions (tax rate, percent equity, project lifetime, etc.), and reflect details as they were provided in the original studies. Accordingly, the intent of this database is not to directly compare one technology pathway against another, and caution should be taken in interpreting the outputs as such.

      Funding Acknowledgement
      This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by  the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

      Contact Phone
      Publication Date
      Organization
      Lab
      Contact Email
      christopher.kinchin@nrel.gov
      Contact Person
      Christopher Kinchin
      Contact Organization
      Bioenergy Technologies Office, National Renewable Energy Laboratory
      Bioenergy Category
      Author(s)
      Christopher Kinchin
      Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.
      Subscribe to DOE