Skip to main content

ORNL

Perennial grasses are touted as sustainable feedstocks for energy production. Such benefits, however, may be offset if excessive nitrogen (N) fertilization leads to economic and environmental issues. Furthermore, as yields respond to changes in climate, nutrient requirements will change, and thus guidance on minimal N inputs is necessary to ensure sustainable bioenergy production. Here, a pairwise meta-analysis was conducted to investigate the effects of N fertilization (amount and duration) and climate on the above-ground biomass yields of miscanthus (Miscanthus x giganteus) and switchgrass (Panicum virgatum L.). Both regression models and meta-analyses showed that switchgrass was more responsive to N than miscanthus, although both showed significant and positive N effects. Meta-analysis further showed that the positive growth response of miscanthus to N application increased with N addition rates of 60–300 kg N ha−1 year−1, but the magnitude of the response decreased with the number of years of fertilization (duration). N effects on switchgrass biomass increased and peaked at rates of 120–160 kg N ha−1 year−1 and 5–6 years of N inputs, but diminished for rates >300 kg N ha−1 year−1 and >7 years. Meta-analysis further revealed that the influences of N on switchgrass increased with both mean annual temperature and precipitation. Miscanthus yields were less responsive to climate than switchgrass yields. This meta-analysis helps fill a gap in estimation of biofeedstock yields based on N fertilization and could help better estimate minimum N requirements and soil management strategies for miscanthus and switchgrass cultivation across climatic conditions, thereby improving the efficiency and sustainability of bioenergy cropping systems.

    Publication Date
    Organization
    Lab
    DOI
    https://doi.org/10.1016/j.rser.2019.03.037
    Contact Person
    Huaihai Chen
    Contact Organization
    Oak Ridge National Laboratory
    Bioenergy Category
    Author(s)
    Huaihai Chen , Zhongmin Dai , Henriette I. Jager , Stan D. Wullschleger , Jianming Xu , Christopher W. Schadt
    Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

    Sustainable production of algae will depend on understanding trade-offs at the energy-water nexus. Algal biofuels promise to improve the environmental sustainability profile of renewable energy along most dimensions. In this assessment of potential US freshwater production, we assumed sustainable production along the carbon dimension by simulating placement of open ponds away from high-carbon-stock lands (forest, grassland, and wetland) and near sources of waste CO 2 . Along the water dimension, we quantified trade-offs between water scarcity and production for an ‘upstream’ indicator (measuring minimum water supply) and a ‘downstream’ indicator (measuring impacts on rivers). For the upstream indicator, we developed a visualization tool to evaluate algae production for different thresholds for water surplus. We hypothesized that maintaining a minimum seasonal water surplus would also protect river habitat for aquatic biota. Our study confirmed that ensuring surplus water also reduced the duration of low-flow events, but only above a threshold. We also observed a trade-off between algal production and the duration of low-flow events in streams. These results can help to guide the choice of basin-specific sustainability targets to avoid conflicts with competing water users at this energy-water nexus. Where conflicts emerge, alternative water sources or enclosed photobioreactors may be needed for algae cultivation.

    Publication Date
    Organization
    Lab
    DOI
    https://doi.org/10.3390/w11040836
    Contact Person
    Henriette I. Jager
    Contact Organization
    Oak Ridge National Laboratory
    Bioenergy Category
    Author(s)
    Henriette I. Jager , Rebecca A. Efroymson , Latha M. Baskaran
    Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

    Practicing agriculture decreases downstream water quality when compared to non-agricultural lands. Agricultural watersheds that also grow perennial biofuel feedstocks can be designed to improve water quality compared to agricultural watersheds without perennials. The question then becomes which conservation practices should be employed and where in the landscape should they be situated to achieve water quality objectives when growing biofuel feedstocks. In this review, we focused on four types of spatial decisions in a bioenergy landscape: decisions about placement of vegetated strips, artificial drainage, wetlands, and residue removal. The appropriate tools for addressing spatial design questions are optimizations that seek to minimize losses of sediment and nutrients, reduce water temperature, and maximize farmer income. To accomplish these objectives through placing conservation practices, both field-scale and watershed-scale cost and benefits should be considered, as many biophysical processes are scale dependent. We developed decision trees that consider water quality objectives and landscape characteristics when determining the optimal locations of management practices. These decision trees summarize various rules for placing practices and can be used by farmers and others growing biofuels. Additionally, we examined interactions between conservation practices applied to bioenergy landscapes to highlight synergistic effects and to comprehensively address the question of conservation practice usage and placement. We found that combining conservation practices and accounting for their interactive effects can significantly improve water quality outcomes. Based on our review, we determine that by making spatial decisions on conservation practices, bioenergy landscapes can be designed to improve water quality and enhance other ecosystem services.

      Publication Date
      Organization
      Lab
      Contact Email
      jkreig@vols.utk.edu
      DOI
      https://doi.org/10.1016/j.biombioe.2019.105327
      Contact Person
      Jasmine A.F. Kreig
      Contact Organization
      University of Tennessee
      Bioenergy Category
      Author(s)
      Jasmine A.F. Kreig , Herbert Ssegane , Indrajeet Chaubey , Maria C. Negri , Henriette I. Jager
      Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

      The economic potential for Eucalyptus spp. production for jet fuel additives in the United States: A 20 year projection suite of scenarios ranging from $110 Mg-1 to $220 Mg-1 utilizing the POLYSYS model.

      Contact Phone
      Publication Date
      Project Title
      The economic potential for Eucalyptus spp. production for jet fuel additives in the United States
      Organization
      Lab
      Contact Email
      davismr@ornl.gov
      Contact Person
      Maggie R. Davis
      Contact Organization
      ORNL
      Author(s)
      Maggie R. Davis

      Logging and mill residues are currently the largest sources of woody biomass for bioenergy in the US, but short-rotation woody crops (SRWCs) are expected to become a larger contributor to biomass production, primarily on lands marginal for food production. However, there are very few studies on the environmental effects of SRWCs, and most have been conducted at stand rather than at watershed scales. In this manuscript, we review the potential environmental effects of SRWCs relative to current forestry or agricultural practices and best management practices (BMPs) in the southeast US and identify priorities and constraints for monitoring and modeling these effects. Plot-scale field studies and a watershed-scale modeling study found improved water quality with SRWCs compared to agricultural crops. Further, a recent watershed-scale experiment suggests that conventional forestry BMPs are sufficient to protect water quality from SRWC silvicultural activities, but the duration of these studies is short with respect to travel times of groundwater transporting nitrate to streams. While the effects of SRWC production on carbon (C) and water budgets depend on both soil properties and previous land management, woody crops will typically sequester more C when compared with agricultural crops. The overall C offset by SRWCs will depend on a variety of management practices, the number of rotations, and climate. Effects of SRWCs on biodiversity, especially aquatic organisms, are not well studied, but a meta-analysis found that bird and mammal biodiversity is lower in SRWC stands than unmanaged forests. Long-term (i.e., over multiple rotations) water quality, water use, C dynamics, and soil quality studies are needed, as are larger-scale (i.e., landscape scale) biodiversity studies, to evaluate the potential effects of SRWC production. Such research should couple field measurement and modeling approaches due to the temporal (i.e., multiple rotations) and spatial (i.e., heterogeneous landscape) scaling issues involved with SRWC production.

      Contact Phone
      Publication Date
      Project Title
      Short-rotation woody biomass sustainability
      Organization
      Lab
      Contact Email
      griffithsna@ornl.gov
      DOI
      10.1111/gcbb.12536
      Contact Person
      Natalie Griffiths
      Contact Organization
      Oak Ridge National Laboratory
      Bioenergy Category
      Author(s)
      Natalie A. Griffiths , Benjamin M. Rau , Kellie B. Vache , Gregory Starr , Menberu M. Bitew , Doug P. Aubrey , James A. Martin , Elizabeth Benton , C. Rhett Jackson
      WBS Project Number
      4.2.2.41
      Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

      The objective of this research project was to assess whether standard forestry best management practices (BMPs) are sufficient to protect stream water quality from intensive silviculture associated with short-rotation woody crop (SRWC) production for bioenergy. Forestry BMPs are designed to prevent the movement of deleterious quantities of nutrients, herbicides, sediments, and thermal energy (sunlight hitting stream channels) from clear-cuts and plantations to surface waters. Until now, there have been no watershed-scale studies examining the effectiveness of traditional forestry BMPs as applied to SRWC production for bioenergy. The demand for woody bioenergy feedstocks is expected to increase, especially in the southeastern United States where the climate, topography, and land ownership are favorable for wood production. Therefore, it is important to evaluate the environmental effects of SRWC production for bioenergy and the efficacy of BMPs.

      This study used a watershed-scale experiment in a before-after, control-impact design to examine the environmental effects of short-rotation loblolly pine (Pinus taeda) production for bioenergy and evaluate the efficacy of BMPs for protecting surface water quality. Environmental measurements included water and soil quality (i.e., nitrogen, phosphorus, suspended solid, pesticide concentrations in water, nitrate leaching, nitrogen mineralization, denitrification, ecosystem nitrogen budget, conservative tracer modeling), hydrology (i.e., overland flow and concentrated flow tracks, interflow [shallow lateral subsurface flow], groundwater dynamics), and productivity and stand-level ecophysiology (i.e., tree growth, carbon, water, and energy fluxes). Most of these environmental metrics were measured before (for ~2 years) and after (for ~6 years) harvest, planting, and managing short-rotation loblolly pine for bioenergy on more than 50% of the land area in two treatment watersheds and also in one mature timber reference watershed. The three study watersheds are located in the Upper Fourmile Creek watershed at the Savannah River Site in South Carolina. All silviculture practices in the two treatment watersheds followed South Carolina Forestry BMPs (e.g., minimized soil compaction and bare ground exposure; inhibited hydraulic connections between bare ground and surface waters; provided forested buffers around streams).

      The silvicultural plan used in the watershed-scale experiment was designed to achieve high yields of loblolly pine over a short rotation (10–12 green tons/acre/year at 10–12 years), and we intentionally pushed the system in terms of high rates of fertilizer applied. Tree growth and net ecosystem exchange (carbon flux) data demonstrated that the objective of accelerating growth was achieved. In the fourth growing season, aboveground biomass of trees averaged 12,000 kg/ha and carbon sequestration was 466 g C/m2/y. The carbon sequestration rate of the loblolly pine was 1–8 years ahead of conventional southern pine stands grown for pulp production. However, our plot-scale study that manipulated levels of fertilizer and herbicide applications found that the most efficient production system based on the ecosystem N budget was a silvicultural treatment of herbicide without fertilizer; tree growth was 90% of that achieved with operational-scale fertilizer additions and nitrate leaching was lower than in the fertilized treatments. At the operational (watershed) scale, only 30–60% of the nitrogen applied in fertilizers was sequestered in pine after the fourth growing season. Overall, some components of the silvicultural treatments were efficient (i.e., early control of competing plants) and some aspects were not (i.e., early fertilization). These results suggest that nitrogen fertilizers were applied in excess in the first three years and highlight the importance of evaluating water quality responses and efficacy of BMPs under these intensive silvicultural applications.

      Despite the high fertilizer applications in the watershed-scale experiment, there were minimal effects of SRWC production on stream water quality, suggesting that forestry BMPs appear to be effective at protecting surface waters. However, nitrate concentrations were elevated in shallow subsurface flow (interflow) and in concentrated flow tracks. Nitrate concentrations also increased in groundwater following harvest and the first fertilizer application. The highest nitrate concentrations measured in groundwater were <2 mg N/L, which is below the US Environmental Protection Agency regulatory limit of 10 mg N/L. These low-gradient watersheds are dominated by groundwater flow paths, and there are several lines of evidence suggesting that some of the elevated nitrate in groundwater should have reached the streams during the 6-year-long posttreatment monitoring period. Groundwater modeling suggests that although transport times to the stream might be on the order of a decade, transport from near-stream portions of the plantations are shorter (1–3 years). Conservative (i.e., non-reactive) tracer modeling also suggests that nitrate concentrations would be elevated in streams following the silvicultural treatments if nitrate travelled conservatively (i.e., nitrate is not taken up or transformed along the groundwater flow path). Estimates of denitrification suggest that this microbial process is important in removing nitrate in groundwater both in the sandy upland areas and in the organic-rich riparian zones (streamside management zones) that are characteristic of this region. Overall, the magnitude of these processes suggests that BMPs in these low-gradient, Coastal Plain watersheds are sufficiently robust to mitigate a relatively low nitrogen fertilizer use efficiency. Phosphorus-based fertilizers were also applied as part of the watershed-scale study, but there were no changes in soluble reactive phosphorus concentrations in stream or groundwater, likely because phosphorus is much less mobile than nitrate and the subsoils contain clays that bind phosphorus.

      Aside from fertilizer fate, other important water quality parameters are the fate of applied pesticides and the transport of sediments and associated nutrients to streams. We found little evidence of pesticide movement as none of the stream water samples collected posttreatment had detectable levels of pesticides. The pesticides applied in this study are commonly used in southeastern US silvicultural operations and have low mobility and are moderately persistent. We also found very little evidence of sediment transport to streams via overland flow. Concentrated flow track surveys found that the most likely path of solutes by overland flow was from variable source areas that expanded into the plantations during periods with elevated water tables. The greatest sediment input was from an interior ditch of a paved road and was unrelated to silvicultural management of the site. There were no effects of SRWC production on total nitrogen, phosphorus, or suspended solid concentrations in stream water. Therefore, forestry BMPs were effective with respect to pesticide applications, and overland flow and associated sediment transport.

      Overall, the lack of effect of short-rotation loblolly pine production for bioenergy on stream water quality suggests that current forestry BMPs are effective at protecting surface waters in the Coastal Plain landscape even with high levels of fertilization and herbicide application associated with SRWC production. These results should be applicable throughout the southeastern Coastal Plain, in watersheds that are characterized by low-gradient uplands with sandy soils and organic-rich riparian zones. Hydrologic processes in the Piedmont differ sufficiently from those in the Coastal Plain that caution should be used when extrapolating these findings to the Piedmont.

      Contact Phone
      Publication Date
      Project Title
      Short-rotation woody biomass sustainability
      Organization
      Lab
      Contact Email
      griffithsna@ornl.gov
      Contact Person
      Natalie Griffiths
      Contact Organization
      Oak Ridge National Laboratory
      Bioenergy Category
      Author(s)
      Natalie A. Griffiths , C. Rhett Jackson , John I. Blake , Johnson Jeffers , Benjamin M. Rau , Gregory Starr , Kellie Vache
      WBS Project Number
      4.2.2.41
      Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

      This is a joint report between three national labs, ORNL, INL, and ANL, that describes outcomes from a workshop. The Bioenergy Solutions to Gulf Hypoxia Workshop gathered stakeholders from industry, academia, national laboratories, and U.S. federal agencies to discuss how biomass feedstocks could help decrease nutrient loadings to the Gulf of Mexico (Gulf), a root cause of the large hypoxic zone that forms each summer. More broadly, workshop participants discussed the current state of environmental markets in the United States and the state of the science on nutrient management and monetization of the ecosystem services and environmental and social benefits derived from growing energy crops.

      A diverse group of participants presented informative perspectives during five sessions: (1) Framing the Problem, (2) Technologies and Practices to Improve Nutrient Management, (3) Monetizing Ecosystem Services, (4) Strategies to Advance Progress, and (5) Research Gaps and Strategies. Multiple breakout discussions designed to elicit stakeholder inputs were interspersed within the presentations.

      Contact Phone
      Publication Date
      Project Title
      Visualizing Ecosystem Services Portfolios of Agricultural and Forested Biomass Production
      Lab
      Contact Email
      jagerhi@ornl.gov
      Contact Person
      Henriette Jager
      Contact Organization
      ORNL, ANL, INL
      Bioenergy Category
      Author(s)
      Henriette Jager , Christina Negri , Leslie Ovard , Shyam Nair
      WBS Project Number
      4.2.1.40
      Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

      Advanced biomass feedstocks tend to provide more non-fuel ecosystem goods and services (ES) than 1st-generation alternatives. We explore the idea that payment for non-fuel ES could facilitate market penetration of advanced biofuels by closing the profitability gap. As a specific example, we discuss the Mississippi-Atchafalaya River Basin (MARB), where 1st-generation bioenergy feedstocks (e.g., corn-grain) have been integrated into the agricultural landscape. Downstream, the MARB drains to the Gulf of Mexico, where the most-valuable fishery in the US is impacted by annual formation of a large hypoxic "Dead zone." We suggest that advanced biomass production systems in the MARB can increase and stabilize the provision of ES derived from the coastal and marine ecosystems of the Gulf-of-Mexico. Upstream, we suggest that choosing feedstocks based on their resistance or resilience to disturbance (e.g., perennials, diverse feedstocks) can increase reliability in ES provision over time. Direct feedbacks to incentivize producers of advanced feedstocks are currently lacking. Perhaps a shift from first-generation biofuels to perennial-based fuels and other advanced bioenergy systems (e.g., algal diesel, biogas from animal wastes) can be encouraged by bringing downstream environmental externalities into the market for upstream producers. In future, we can create such feedbacks through payments for ES, but significant research is needed to pave the way.

      Contact Phone
      Publication Date
      Project Title
      Visualizing Ecosystem Service Portfolios of Agricultural and Forested Biomass Production
      Organization
      Lab
      Contact Email
      jagerhi@ornl.gov
      Contact Person
      Henriette Jager
      Contact Organization
      Oak Ridge National Laboratory
      Bioenergy Category
      Author(s)
      Jager, Henriette I , Efroymson, Rebecca A.
      WBS Project Number
      4.2.1.40
      Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

      Reducing dependence on fossil‐based energy has raised interest in biofuels as a potential energy source, but concerns have been raised about potential implications for water quality. These effects may vary regionally depending on the biomass feedstocks and changes in land management. Here, we focused on the Tennessee River Basin (TRB), USA. According to the recent 2016 Billion‐Ton Report (BT16) by the US Department of Energy, under two future scenarios (base‐case and high‐yield), three perennial feedstocks show high potential for growing profitably in the TRB: switchgrass (Panicum virgatum), miscanthus (Miscanthus × giganteus), and willow (Salix spp.). We used the Soil & Water Assessment Tool (SWAT) to compare hydrology and water quality for a current landscape with those simulated for two future BT16 landscapes. We combined publicly available temporal and geospatial datasets with local land and water management information to realistically represent physical characteristics of the watershed. We developed a new autocalibration tool (SWATopt) to calibrate and evaluate SWAT in the TRB with reservoir operations, including comparison against synthetic and intermediate response variables derived from gage measurements. Our spatiotemporal evaluation enables to more realistically simulate the current situation, which gives us more confidence to project the effects of land‐use changes on water quality. Under both future BT16 scenarios, simulated nitrate and total nitrogen loadings and concentrations were greatly reduced relative to the current landscape, whereas runoff, sediment, and phosphorus showed only small changes. Difference between simulated water results for the two future scenarios was small. The influence of biomass production on water quantity and quality depended on the crop, area planted, and management practices, as well as on site‐specific characteristics. These results offer hope that bioenergy production in the TRB could help to protect the region's rivers from nitrogen pollution by providing a market for perennial crops with low nutrient input requirements.

      Contact Phone
      Publication Date
      Project Title
      Visualizing Ecosystem Service Portfolios of Agricultural and Forested Biomass Production
      Organization
      Lab
      Contact Email
      jagerhi@ornl.gov
      DOI
      https://doi.org/10.1111/gcbb.12537
      Contact Person
      Henriette Jager
      Contact Organization
      Oak Ridge National Laboratory
      Bioenergy Category
      Author(s)
      Wang, Gangsheng , Jager, Henriette
      WBS Project Number
      4.2.1.40
      Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

      Highlights
      • Opportunities to improve coproduction of wildlife and biomass-for-energy exist at multiple spatial scales.

      • At the landscape scale, we review strategies for increasing biodiversity in biomass production systems, drawing examples from plantations, dedicated perennial grasses, and forest thinning systems in the Americas.

      • At the scale of one land owner, we describe wildlife-friendly practices to promote land sharing for each production system.

      • Dynamic strategies for land sharing can also improve outcomes for wildlife in landscapes containing biomass production systems.

      • Implementing practices that minimize wildlife damage to crops are important to address land-owner concerns and to promote adoption of wildlife-friendly practices.

      Contact Phone
      Publication Date
      Project Title
      Visualizing Ecosystem Service Portfolios of Agricultural and Forested Biomass Production
      Organization
      Lab
      Contact Email
      jagerhi@ornl.gov
      DOI
      https://doi.org/10.1016/j.gecco.2018.e00490
      Contact Person
      Henriette Jager
      Contact Organization
      ORNL
      Author(s)
      Jager, Henriette I , Kreig, Jasmine
      WBS Project Number
      4.2.1.40
      Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.
      Subscribe to ORNL