Using System Dynamics to Model the Transition to Biofuels in the United States Preprint, B. Bush, M. Duffy, and D. Sandor, National Renewable Energy Laboratory S. Peterson, Peterson Group To be presented at the Third International Conference on Systems of Systems Engineering Monterey, California June 2-4, 2008 Conference Paper NREL/CP-150-43153 June 2008

Today, the U.S. consumes almost 21 million barrels of crude oil per day; approximately 60% of the U.S. demand is supplied by imports. The transportation sector alone accounts for two-thirds of U.S. petroleum use. Biofuels, liquid fuels produced from domestically-grown biomass, have the potential to displace about 30% of current U.S. gasoline consumption. Transitioning to a biofuels industry on this scale will require the creation of a robust biomass-to-biofuels system-of-systems that operates in concert with the existing agriculture, forestry, energy, and transportation markets. The U.S. Department of Energy is employing a system dynamics approach to investigate potential market penetration scenarios for cellulosic ethanol, and to aid decision makers in focusing government actions on the areas with greatest potential to accelerate the deployment of biofuels and ultimately
reduce the nation’s dependence on imported oil.

Contact Information
Publication Information
Bush, Brian
Publication Year: 
DOE Information
Bioenergy Category: