Skip to main content

biofuels

n the past decades, the production of biomass for energy in agriculture and forestry has increased in many parts of the world. For years to come, further increase in land use for bioenergy will be needed to meet the renewable energy ambitions of many countries, and to reduce fossil fuel use and associated GHG emissions. As many industrialized countries have a limited biomass production potential compared to their prospective demand, it is expected that substantial international bioenergy trade will develop in the coming decades where regions such as Latin America and sub-Saharan Africa will produce feedstocks for both domestic consumption and for export. Increasing the production and energetic use of biomass has many direct and indirect effects, including land-use related GHG emissions, impacts on biodiversity, and other environmental and social effects. However, while much of the recent years’ debate has concerned negative effects, it is important to note that bioenergy expansion can also lead to positive environmental and socio-economic outcomes.

This workshop aimed to bring together current state-of-the-art research concerned with assessing land use effects of bioenergy, mitigating negative impacts, and promoting beneficial outcomes.

Publication Date
Contact Email
neil.bird@joanneum.at
Contact Person
David Neil Bird
Contact Organization
IEA Bioenergy Task 38
Bioenergy Category

Provides a summary of the key findings of the IPCC Special Report on Renewable Energy Sources (SRREN) and Climate Change Mitigation.

Lab
Contact Email
ethan.warner@nrel.gov
Contact Person
Ethan Warner
Contact Organization
National Renewable Energy Laboratory
Bioenergy Category

Biofuels are promoted in the United States through aggressive legislation, as one part of an overall strategy to lessen dependence on imported energy as well as to reduce the emissions of greenhouse gases (Office of the Biomass Program and Energy Efficiency and Renewable Energy, 2008). For example, the Energy Independence and Security Act of 2007 (EISA) mandates 36 billion gallons of renewable liquid transportation fuel in the U.S. marketplace by the year 2022 (U.S. Government, 2007). Meeting such large volumetric targets has prompted an unprecedented increase in funding for biofuels research.

Publication Date
Contact Email
dana.stright@nrel.gov
Contact Organization
NREL
Bioenergy Category
Author(s)
Emily Newes, Daniel Inman, Brian Bush

This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States. In its current form, the model represents multiple pathways leading to the production of fuel ethanol as well as advanced biofuels such as biomass-based gasoline, diesel, jet fuel, and butanol).

Publication Date
Contact Email
dana.stright@nrel.gov
Contact Person
Dana Stright
Contact Organization
NREL
Author(s)
Peterson, Steve

Biofuels are presented in rich countries as a solution to two crises: the climate crisis and the oil crisis. But they may not be a solution to either, and instead are contributing to a third: the current food crisis.
Meanwhile the danger is that they allow rich-country governments to avoid difficult but urgent decisions about how to reduce consumption of oil, while offering new avenues to continue expensive support to agriculture at the cost of taxpayers. In the meantime, the most serious costs of these policies – deepening poverty and hunger, environmental degradation, and accelerating climate change – are being ‘dumped’ on developing countries.

Bioenergy Category

Recent legislative mandates have been enacted at state and federal levels with the purpose of reducing life cycle greenhouse gas (GHG) emissions from transportation fuels. This legislation encourages the substitution of fossil fuels with ‘low-carbon’ fuels. The burden is put on regulatory agencies to determine the GHG-intensity of various fuels, and those agencies naturally look to science for guidance. Even though much progress has been made in determining the direct life cycle emissions from the production of biofuels, the science underpinning the estimation of potentially signifi cant emissions from indirect land use change (ILUC) is in its infancy. As legislation requires inclusion of ILUC emissions in the biofuel life cycle, regulators are in a quandary over accurate implementation. In this article, we review these circumstances and offer some suggestions for how to proceed with the science of indirect effects and regulation in the face of uncertain science. Besides investigating indirect deforestation and grassland conversion alone, a more comprehensive assessment of the total GHG emissions implications of substituting biofuels for petroleum needs to be completed before indirect effects can be accurately determined. This review fi nds that indirect emissions from livestock and military security are particularly important, and deserve further research. © 2009 Society of Chemical Industry and John Wiley & Sons, Ltd

Bioenergy Category

The IPCC SRREN report addresses information needs of policymakers, the private sector and civil society on the potential of renewable energy sources for the mitigation of climate change, providing a comprehensive assessment of renewable energy technologies and related policy and financial instruments. The IPCC report was a multinational collaboration and synthesis of peer reviewed information: Reviewed, analyzed, coordinated, and integrated current high quality information. The OBP International Sustainability activities contributed to the Bioenergy chapter, technology cost annex as well as lifecycle assessments and sustainability information.

Contact Email
ethan.warner@nrel.gov

Relationships between people and their environment are largely defined by land use. Space and soil are needed for native plants and wildlife, as well as for crops used for food, feed, fiber, wood products and biofuel (liquid fuel derived from plant material). People also use land for homes, schools, jobs, transportation, mining and recreation. Social and economic forces influence the allocation of land to various uses. The recent increase in biofuel production offers the opportunity to design ways to select locations and management plans that are best suited to meet human needs while also protecting natural biodiversity (the variation of life within an ecosystem, biome or the entire Earth). Forethought and careful planning can help society balance these diverse demands for land. At the same time, current energy infrastructure must become less reliant on the earth’s finite supply of fossil fuels because they contribute to greenhouse gas emissions, cause environmental pollution, and jeopardize energy security. The sustainable development of renewable fuel alternatives can offer many benefits but will demand a comprehensive understanding of how our land-use choices affect the ecological systems around us. By incorporating both socioeconomic and ecological principles into policies, decisions made regarding biofuel production can be based on a more sustainable balance of social, economic, and ecological costs and benefits. Researchers are actively studying the potential impacts of biofuels production on land use and biodiversity, and there is not yet a firm consensus on the extent of these effects or how to measure them. In this report, we summarize the range of conclusions to date by exploring the features and benefits of a landscape approach to analyzing potential land-use changes associated with biofuel production using different feedstocks. We look at how economics and farm policies may influence the location and amount of acreage that will ultimately be put into biofuel production and how those land-use changes might affect biodiversity. We also discuss the complexities of land-use assessments, estimates of carbon emissions, and the interactions of biofuel production and the US Department of Agriculture Conservation Reserve Program. We examine the links between water and biofuel crops and how biofuel expansion might avoid “food versus fuel” conflicts. Finally, we outline ways to design bioenergy systems in order to optimize their social, economic and ecological benefits.

Publication Date
Contact Email
dalevh@ornl.gov
Bioenergy Category
Author(s)
Virginia Dale

IN THEIR REPORTS IN THE 29 FEBRUARY ISSUE (“LAND CLEARING AND THE BIOFUEL CARBON debt,” J. Fargione et al., p. 1235, and “Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,” T. Searchinger et al., p. 1238), the authors do not provide adequate support for their claim that biofuels cause high emissions due to land-use change. The conclusions of both papers depend on the misleading premise that biofuel production causes forests and grasslands to be converted to agriculture. However, field research, including a meta-analysis of 152 case studies, consistently finds that land-use change and associated carbon emissions are driven by interactions among cultural, technological, biophysical, political, economic, and demographic forces within a spatial and temporal context rather than by a single crop market (1–3). Searchinger et al. assert that soybean prices accelerate clearing of rainforest based on a single citation (4) for a study not designed to identify the causal factors of land clearing. The study (4) analyzed satellite imagery from a single state in Brazil over a 4- year period and focused on land classification after deforestation. Satellite imagery can measure what changed but does little to tell us why. Similarly, Fargione et al. do not rely on primary empirical studies of causes of landuse change. Furthermore, neither fire nor soil carbon sequestration was properly considered in the Reports. Fire’s escalating contribution to global climate change is largely a result of burning in tropical savannas and forests (5, 6). Searchinger et al. postulate that 10.8 million hectares could be needed for future biofuel, a fraction of the 250 to 400 million hectares burned each year between 2000 and 2005 (5, 6). By offering enhanced employment and incomes, biofuels can help establish economic stability and thus reduce the recurring use of fire on previously cleared land as well as pressures to clear more land (7–9). Neither Searchinger et al. nor Fargione et al. consider fire as an ongoing land-management tool. In addition, deep-rooted perennial biofuel feedstocks in the tropics could enhance soil carbon storage by 0.5 to 1 metric ton per hectare per year (10). An improved understanding of the forces behind land-use change leads to more favorable conclusions regarding the potential for biofuels to reduce greenhouse gas emissions.

Publication Date
Contact Email
dalevh@ornl.gov
Contact Person
Dale, Virginia
Contact Organization
ORNL
Author(s)
Keith L. Kline , Virginia H. Dale

Developing scientific criteria and indicators should play a critical role in charting a sustainable path for the rapidly developing biofuel industry. The challenge ahead in developing such criteria and indicators is to address the limitations on data and modeling.

Publication Date
Contact Email
dalevh@ornl.gov
Bioenergy Category
Author(s)
Hecht, Alan
Subscribe to biofuels