Skip to main content

biofuels

Relationships between people and their environment are largely defined by land use. Space and soil are needed for native plants and wildlife, as well as for crops used for food, feed, fiber, wood products and biofuel (liquid fuel derived from plant material). People also use land for homes, schools, jobs, transportation, mining and recreation. Social and economic forces influence the allocation of land to various uses. The
recent increase in biofuel production offers the opportunity to design ways to select locations and management plans that are best suited to meet human needs while also protecting natural biodiversity (the variation of life within an ecosystem, biome or the entire Earth).

Contact Phone
Publication Date
Contact Email
dalevh@ornl.gov
Contact Person
Virginia Dale
Contact Organization
Center for BioEnergy Sustainability, Oak Ridge National Laboratory
Bioenergy Category
Author(s)
Virginia H. Dale

The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different—and potentially conflicting—values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote ‘‘sustainable’’ bioenergy production.  We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

Contact Phone
Publication Date
Contact Email
dalevh@ornl.gov
Contact Person
Virginia Dale
Contact Organization
Oak Ridge National Laboratory
Bioenergy Category
Author(s)
Timothy Lawrence Johnson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Vimmerstedt, L. J., Bush, B. W., Hsu, D. D., Inman, D. and Peterson, S. O. (2014), Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: a system dynamics perspective. Biofuels, Bioprod. Bioref.. doi: 10.1002/bbb.1515
 
 
To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

Publication Date
Contact Email
dana.stright@nrel.gov
Contact Person
Dana Stright
Contact Organization
NREL
Bioenergy Category
Author(s)
NREL

Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses. The purpose of this report is to describe the scenarios that comprise the BSM scenario library. At present, we have the following policy-focused scenarios in our library: minimal policies, ethanol-focused policies, equal access to policies, output-focused policies, technological diversity focused, and the point-of-production- focused. This report describes each scenario, its policy settings, and general insights gained through use of the scenarios in analytic studies.

Publication Date
Contact Email
dana.stright@nrel.gov
Contact Person
Dana Stright
Contact Organization
NREL
Bioenergy Category
Author(s)
Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstration and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scale biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model—a system dynamics model of the biomass to biofuels system—that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial growth impact on the development of the biofuels industry. Results also show that other conditions, such as accompanying incentives, have major impacts on the effectiveness of such investments. This report does not advocate for or against investments, incentives, or policies, but analyzes simulations of their effects.

Vimmerstedt, L. and Bush, B. "Effects of Deployment Investment on the Growth of the Biofuels Industry." Golden, CO: National Renewable Energy Laboratory (December). NREL/TP-6A20-60802

To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

Publication Date
Contact Email
dana.stright@nrel.gov
Contact Person
Dana Stright
Contact Organization
NREL
Bioenergy Category
Author(s)
Laura J. Vimmerstedt , Brian W. Bush
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Biomass Scenario Model: Supplemental Tableau workbook for Christopher M Clark et al 2013 Environ. Res. Lett. 8 025016 doi:10.1088/1748-9326/8/2/025016 Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program

To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

Publication Date
Contact Email
dana.stright@nrel.gov
Contact Person
Dana Stright
Contact Organization
NREL
Bioenergy Category

The production of biobased feedstocks (i.e., plant– or algal-based material use for transportation fuels, heat, power and bioproducts) for energy consumption has been expanding rapidly in recent years. Biomass now accounts for 4.1% of total U.S. primary energy production. Unfortunately, there are considerable knowledge gaps relative to implications of this industry expansion for wildlife.

The Wildlife Society convened an expert committee to analyze the latest scientific literature on the effects of growing, managing, and harvesting feedstocks for bioenergy on wildlife and wildlife habitat, and provide answers to questions and variables affecting bioenergy development and wildlife so that site managers might better predict consequences of managing bioenergy feedstocks.

This Technical Review is organized with respect to an ecosystems approach and tries to identify key biomass management practices within those systems, including agricultural lands and croplands; grassland ecosystems and Conservation Reserve Program (CRP) grasslands; forest ecosystems; and algae and aquatic feedstocks. A PDF of this review can be downloaded for free at the link below.

Contact Phone
Usage Policy
Preferred Citation: Rupp, S. P., L. Bies, A. Glaser, C. Kowaleski, T. McCoy, T. Rentz, S. Riffell, J. Sibbing, J. Verschuyl,and T. Wigley. 2012. Effects of bioenergy production on wildlife and wildlife habitat. Wildlife Society TechnicalReview 12-
Publication Date
Contact Email
srupp@enviroscapes.org
Contact Person
Dr. Susan P. Rupp
Contact Organization
Enviroscapes Ecological Consulting
Bioenergy Category
Author(s)
Rupp, S. P., L. Bies, A. Glaser, C. Kowaleski, T. McCoy, T. Rentz, S. Riffell, J. Sibbing, J. Verschuyl, and T. Wigley.

Abstract: To ensure effective biomass feedstock provision for large-scale ethanol production, a three-stage supply chain was proposed to include biomass supply sites, centralized storage and preprocessing (CSP) sites, and biorefi nery sites. A GIS-enabled biomass supply chain optimization model (BioScope) was developed to minimize annual biomass-ethanol production costs by selecting the optimal numbers, locations, and capacities of farms, CSPs, and biorefi neries as well as identifying the optimal biomass fl ow pattern from farms to biorefi neries. The model was implemented to study the Miscanthus-ethanol supply chain in Illinois. The results of the baseline case, assuming 2% of cropland is allocated for Miscanthus production, showed that unit Miscanthus-ethanol production costs were $220.6 Mg–1, or $0.74 L–1. Biorefi nery-related costs are the largest cost component, accounting for 48% of the total costs, followed by biomass procurement, transportation, and CSP related costs. The unit Miscanthus-ethanol production costs could be reduced to $198 Mg–1 using 20% of cropland, primarily due to savings in transportation costs. Sensitivity analyses showed that the optimal supply chain confi gurations, including the numbers and locations of supply sites, CSP facilities, and biorefi neries, changed signifi cantly for different cropland usage rates, biomass demands, transportation means, and pre-processing technologies. A supply chain composed of large biorefi neries with the support of distributed CSP facilities was recommended to reduce biofuels production costs. Rail outperformed truck transportation to ship pre-processed biomass. Ground biomass with tapping is the suggested biomass format for the case study in Illinois, while high-density biomass formats are suggested for long distance transportation.

Contact Email
kcting@Illinois.edu
Contact Person
K.C. Ting
Contact Organization
University of Illinois at Urbana-Champaign
Bioenergy Category

 

The objective of this study is to design and evaluate the performance of the supply chain for biocrude production from activated sewage sludge in wastewater treatment facilities. Experimental results indicate that feeding wastewater activated sludge with high sugar load and establishing a high carbon-to-nitrogen ratio in the wastewater can enhance biocrude yield and quality from the sludge. The biocrude will be further refined and converted to biodiesel. The optimization part, of the optimization-simulation framework that we propose, uses a mixed integer program to identify locations for sugar plants as well as the assignment of wastewater treatment plants to sugar plants and refineries. The objective is to minimize total supply chain related costs. We use the solution from the optimization model (the structure of the supply chain) to build a discrete-event simulation model. The simulation captures the seasonal and random nature of biomass supply. We use a case study that designs the supply chain for biocrude in Mississippi given the availability of lignocellulosic biomass, the locations of harvesting sites, location of wastewater treatment plants, and location of refineries

Publication Date
Bioenergy Category
Author(s)
Eksioglu, Sandra

Interest in using biomass feedstocks to produce power, liquid fuels, and chemicals in the U.S. is increasing. Central to determining the potential for these industries to develop is an understanding of the location, quantities, and prices of biomass resources. This paper describes the methodology used to estimate biomass quantities and prices for each state in the continental U.S. An Excel™ spreadsheet contains estimates of biomass quantities potentially available in five categories: mill wastes, urban wastes, forest residues, agricultural residues and energy crops. Availabilities are sorted by anticipated delivered price. A presentation that explains how this information was used to support the goal of increasing biobased products and bioenergy 3 times by 2010 expressed in Executive Order 13134 of August 12, 1999 is also available.
Originally available at https://bioenergy.ornl.gov/resourcedata/index.html (Accessed January 7, 2013).

Attachment
Bioenergy Category
Subscribe to biofuels