Skip to main content

bioenergy

Agroecosystem models that can incorporate management practices and quantify environmental effects
are necessary to assess sustainability-associated food and bioenergy production across spatial scales.
However, most agroecosystem models are designed for a plot scale. Tremendous computational capacity
on simulations and datasets is needed when large scales of high-resolution spatial simulations are conducted.
We used the message passing interface (MPI) parallel technique and developed a master–slave
scheme for an agroecosystem model, EPIC on global food and bioenergy studies. Simulation performance
was further enhanced by applying the Vampir framework. On a Linux-based supercomputer, Cray XT7
Titan, we used 2048 cores and successfully shortened the running time from days to 30 min for a global
30 years of modeling of a bioenergy crop at the resolution of half-degree (62,482 grids) with the message
passing interface based EPIC (mpi_EPIC). The results illustrate that mpi_EPIC using parallel design can
balance simulation workloads and facilitate large-scale, high-resolution analyses of agricultural production
systems, management alternatives and environmental effects.

Contact Phone
Publication Date
Contact Email
klinekl@ornl.gov
Data Source
Computers and Electronics in Agriculture
Contact Person
Keith Kline
Contact Organization
Oak Ridge National Laboratory
Bioenergy Category
Author(s)
S. Kang

Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030).  Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 bllion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production.  Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities.  A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species.  At the global scale, future petroleum production areas intersect more than double the area and a higher total number of threatened species than future biofuel production.  Energy options should be developed to optimize provisioning of ecosystems services while minimizing negative effects, which requires information about potential impacts on critical resources.  Energy conservation and identifying and effectively protecting habitats with high-concervation value are critical first steps toward protecting biodiversity under any fuel production scenario.

Contact Phone
Usage Policy
This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy.  The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United St
Publication Date
Contact Email
dalevh@ornl.gov
DOI
10.1002/bbb.1528
Contact Person
Virginia Dale
Contact Organization
Oak Ridge National Laboratory
Bioenergy Category
Author(s)
Virginia H. Dale , Esther S. Parish , Keith L. Kline
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

a b s t r a c t
The economic availability of biomass resources is a critical component in evaluating the commercial
viability of biofuels. To evaluate projected farmgate prices and grower payments needed to procure 295
million dry Mg (325 million dry tons) of biomass in the U.S. by 2022, this research employs POLYSYS, an
economic model of the U.S. agriculture sector. A price-run simulation suggests that a farmgate price of
$58.42 Mg1 ($53.00 dry ton1) is needed to procure this supply, while a demand-run simulation
suggests that prices of $34.56 and $71.61 Mg1 ($30.00 and $62.00 dry ton1) in are needed in 2012
and 2022, respectively, to procure the same supply, under baseline yield assumptions. Grower
payments are reported as farmgate price minus resource-specific harvest costs.
& 2011 Elsevier Ltd. All rights reserved.

Publication Date
Contact Email
langholtzmh@ornl.gov
Contact Person
Matthew Langholtz
Bioenergy Category
Author(s)
ORNL

The production of biobased feedstocks (i.e., plant– or algal-based material use for transportation fuels, heat, power and bioproducts) for energy consumption has been expanding rapidly in recent years. Biomass now accounts for 4.1% of total U.S. primary energy production. Unfortunately, there are considerable knowledge gaps relative to implications of this industry expansion for wildlife.

The Wildlife Society convened an expert committee to analyze the latest scientific literature on the effects of growing, managing, and harvesting feedstocks for bioenergy on wildlife and wildlife habitat, and provide answers to questions and variables affecting bioenergy development and wildlife so that site managers might better predict consequences of managing bioenergy feedstocks.

This Technical Review is organized with respect to an ecosystems approach and tries to identify key biomass management practices within those systems, including agricultural lands and croplands; grassland ecosystems and Conservation Reserve Program (CRP) grasslands; forest ecosystems; and algae and aquatic feedstocks. A PDF of this review can be downloaded for free at the link below.

Contact Phone
Usage Policy
Preferred Citation: Rupp, S. P., L. Bies, A. Glaser, C. Kowaleski, T. McCoy, T. Rentz, S. Riffell, J. Sibbing, J. Verschuyl,and T. Wigley. 2012. Effects of bioenergy production on wildlife and wildlife habitat. Wildlife Society TechnicalReview 12-
Publication Date
Contact Email
srupp@enviroscapes.org
Contact Person
Dr. Susan P. Rupp
Contact Organization
Enviroscapes Ecological Consulting
Bioenergy Category
Author(s)
Rupp, S. P., L. Bies, A. Glaser, C. Kowaleski, T. McCoy, T. Rentz, S. Riffell, J. Sibbing, J. Verschuyl, and T. Wigley.

The Department of Energy (DOE) Bioenergy Technologies Office held a workshop on "Social Aspects of Bioenergy" on April 24, 2012, in Washington, D.C., and convened a webinar on this topic on May 8, 2012. The workshop addressed questions about how to measure and understand the social impacts of bioenergy production based on a set of social sustainability indicators for bioenergy that were developed by Oak Ridge National Laboratory. The workshop was attended by representatives from DOE, national labs, the Environmental Protection Agency, United States Department of Agriculture, and several universities.

Publication Date
Contact Email
eere_biomass@ee.doe.gov
Data Source
May 2013
Contact Person
Bioenergy Technologies Office
Contact Organization
Bioenergy Technologies Office
Bioenergy Category
Author(s)
Bioenergy Technologies Office
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Land-use change (LUC) is a contentious policy issue because of its uncertain, yet potentially substantial, impact on bioenergy climate change benefits. Currently, the share of global GHG emissions from biofuels-induced LUC is small compared to that from LUC associated with food and feed production and other human-induced causes. However, increasing demand for biofuels derived from feedstocks grown on agricultural land could increase this contribution. No consensus has emerged on how to appropriately isolate and quantify LUC impacts of bioenergy from those of other LUC drivers. We reviewed the literature and illustrate some strategies to minimize bioenergy-related LUC, including ways to increase land’s total productivity and the design and implementation of effective land use policies. The best strategies to reduce LUC risk will vary geographically, requiring a balancing of the advantages and limitations of potential options within the local context together with other goals (social, environmental, economic, energy security, and diversification).

Lab
Bioenergy Category

Indicators of the environmental sustainability of biofuel production, distribution, and use should be selected, measured, and interpreted with respect to the context in which they are used. The context of a sustainability assessment includes the purpose, the particular biofuel production and distribution system, policy conditions, stakeholder values, location, temporal influences, spatial scale, baselines, and reference scenarios. We recommend that biofuel sustainability questions be formulated with respect to the context, that appropriate indicators of environmental sustainability be developed or selected from more generic suites, and that decision makers consider context in ascribing meaning to indicators. In addition, considerations such as technical objectives, varying values and perspectives of stakeholder groups, indicator cost, and availability and reliability of data need to be understood and considered. Sustainability indicators for biofuels are most useful if adequate historical data are available, information can be collected at appropriate spatial and temporal scales, organizations are committed to use indicator information in the decision-making process, and indicators can effectively guide behavior toward more sustainable practices.

Publication Date
Attachment
Bioenergy Category
Author(s)
Efroymson, Rebecca

Reducing “Energy Poverty” is increasingly acknowledged as the “Missing Development Goal”. This is because access to electricity and modern energy sources is a basic requirement to achieve and sustain decent and sustainable living standards. It is essential for lighting, heating and cooking, as well as for education, modern health treatment and productive activities, hence food security and rural development. Yet three billion people – about half of the world’s population - rely on unsustainable biomass-based energy sources to meet their basic energy needs for cooking and heating, and 1.6 billion people lack access to electricity.

Bioenergy Category

Provides a summary of the key findings of the IPCC Special Report on Renewable Energy Sources (SRREN) and Climate Change Mitigation.

Lab
Contact Email
ethan.warner@nrel.gov
Contact Person
Ethan Warner
Contact Organization
National Renewable Energy Laboratory
Bioenergy Category

The IPCC SRREN report addresses information needs of policymakers, the private sector and civil society on the potential of renewable energy sources for the mitigation of climate change, providing a comprehensive assessment of renewable energy technologies and related policy and financial instruments. The IPCC report was a multinational collaboration and synthesis of peer reviewed information: Reviewed, analyzed, coordinated, and integrated current high quality information. The OBP International Sustainability activities contributed to the Bioenergy chapter, technology cost annex as well as lifecycle assessments and sustainability information.

Contact Email
ethan.warner@nrel.gov
Subscribe to bioenergy