Skip to main content

Isobutanol

The compatibility of elastomeric materials used in fuel storage and dispensing applications was determined for test fuels
representing neat gasoline and gasoline blends containing 10 and 17 vol.% ethanol, and 16 and 24 vol.% isobutanol. The
actual test fuel chemistries were based on the aggressive formulations described in SAE J1681 for oxygenated gasoline.
Elastomer specimens of fluorocarbon, fluorosilicone, acrylonitrile rubber (NBR), polyurethane, neoprene, styrene
butadiene rubber (SBR) and silicone were exposed to the test fuels for 4 weeks at 60°C. After measuring the wetted
volume and hardness, the specimens were dried for 20 hours at 60°C and then remeasured for volume and hardness.
Dynamic mechanical analysis (DMA) was also performed to determine the glass transition temperature (Tg).
Comparison to the original values showed that all elastomer materials experienced volume expansion and softening when
wetted by the test fuels. The fluorocarbons underwent the least amount of swelling (100%). The level of swelling for each elastomer was higher for the test
fuels containing the alcohol additions. In general, ethanol produced slightly higher swell than the oxygen equivalent level of
isobutanol. When dried, the fluorocarbon specimens were slightly swollen (relative to the baseline values) due to fuel
retention. The NBRs and neoprene exhibited shrinkage and embrittlement associated with the extraction of plasticizers.
SBR also experienced shrinkage (after drying) but its hardness returned to the baseline value. The dried volumes (and
hardness values) of the silicone, SBR and fluorosilicone rubbers closely matched their original values, but the
polyurethane specimen showed degradation with exposure to the test fuels containing ethanol or isobutanol. The DMA
results showed that the test fuels effectively decreased Tg for the fluorocarbons, but increased Tg for the NBR materials.
The Tg values other elastomers were not affected by the test fuels.

Publication Date
Contact Email
theisstj@ornl.gov
Contact Person
Tim Theiss
Contact Organization
Oak Ridge National Laboratory
Bioenergy Category
Author(s)
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for test fuels representing gasoline blended with 25 vol.% ethanol and gasoline blended with 16 and 24 vol.% isobutanol. Plastic materials included those used in flexible plastic piping and fiberglass resins. Other commonly used plastic materials were also evaluated. The plastic specimens were exposed to Fuel C, CE25a, CiBu16a, and CiBu24a for 16 weeks at 60oC. After measuring the wetted volume and hardness, the specimens were dried for 65 hours at 60oC and then remeasured for volume and hardness. Dynamic mechanical analysis (DMA) was also measured on the dried specimens.
The plastic materials used as permeation barriers exhibited the least amount of properly change when exposed to the test fuels. The performance of nylon was highly dependent on the grade; of the four nylons evaluated, Nylon 6 and Nylon 6,6 showed the lowest property change following exposure to Fuel C, CiBu16a and CiBu24s, but swelled over 7% when exposed to CE25a. Acetal and polybutylene terephthalate (PBT) swelled around 5% with exposure to the test fuels, while high density polyethylene (HDPE) swelled around 10% for each test fuel. The remaining thermoplastics swelled to higher values and in the case of polypropylene, dissolution occurred with exposure to CE25a. The fiberglass resins experience more swelling in CE25a that with the Fuel C or the two isobutanol blends. In general, the plastics exhibited a positive volume change when dried, which was attributed to fuel retention. In addition CE25a produced a higher degree of property change than the other test fuels.
 

Publication Date
Contact Email
theisstj@ornl.gov
Contact Person
Tim Theiss
Contact Organization
Oak Ridge National Laboratory
Bioenergy Category
Author(s)
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.
Subscribe to Isobutanol