Skip to main content

Residue removal

Quantifying lignin and carbohydrate composition of corn (Zea mays L.) is important to support the emerging cellulosic biofuels industry. Therefore, field studies with 0 or 100 % stover removal were established in Alabama and South Carolina as part of the Sun Grant Regional Partnership Corn Stover Project. In Alabama, cereal rye (Secale cereale L.) was also included as an additional experimental factor, serving as a winter cover crop. Plots were located on major soil types representative of their respective states: Compass and Decatur soils in Alabama and a Coxville/Rains-Goldsboro-Lynchburg soil association in South Carolina. Lignin and structural carbohydrate concentrations in the whole (above-ground) plant, cobs, vegetation excluding cobs above the primary ear (top), vegetation below the primary ear (bottom), and vegetation from above the primary ear including cobs (above-ear fraction) were determined using near-infrared spectroscopy (NIRS). The distribution of lignin, ash, and structural carbohydrates varied among plant fractions, but neither inclusion of a rye cover crop nor the stover harvest treatments consistently affected carbohydrate concentrations within locations. Total precipitation and average air temperature during the growing season were strongly correlated with stover composition indicating that weather conditions may have multiple effects on potential biofuel production (i.e., not only yield but also stover quality). When compared to the above-ear fractions, bottom plant partitions contained greater lignin concentrations. Holocellulose concentration was consistently greater in the above-ear fractions at all three locations. Data from this study suggests that the above-ear plant portions have the most desirable characteristics for cellulosic ethanol production via fermentation in the southeastern USA.

Publication Date
DOI
10.1007/s12155-014-9429-5
Bioenergy Category
Author(s)
Spyridon Mourtzinis , Keri B. Cantrell , Francisco J. Arriaga , Kipling S. Balkcom , Jeff M. Novak , James R. Frederick , Douglas L. Karlen

Economic, environmental, and energy independence issues are contributing to rising fossil fuel prices, petroleum supply concerns, and a growing interest in biomass feedstocks as renewable energy sources. Potential feedstocks include perennial grasses, timber, and annual grain crops with our focus being on corn (Zea mays L.) stover. A plot-scale study evaluating stover removal was initiated in 2008 on a South Carolina Coastal Plain Coxville/Rains–Goldsboro–Lynchburg soil association site. In addition to grain and stover yields, carbon balance, greenhouse gas (GHG) emissions and soil quality impact reported elsewhere in this issue, variation in gross energy distribution within various plant fractions — whole plant, below ear shank (bottom), above ear shank (top), cob, as well as leaves and stems of the bottom and top portions (n(part, year) = 20) was measured with an isoperibol calorimeter. Stalks from above the ear shank were the most energy dense, averaging 18.8 MJ/kg db, and when combined with other plant parts from above the ear shank, the entire top half was more energy dense than the bottom half — 18.4 versus 18.2 MJ/kg db. Gross energy content of the whole plant, including the cob, averaged 18.28 ± 0.76 MJ/kg db. Over the 4 years, partial to total removal (i.e., 25 % to 100 %) of above-ground plant biomass could supply between 30 and 168 GJ/ha depending upon annual rainfall. At 168 GJ/ha, the quantity of corn stover biomass (whole plant) available in a 3,254-km2 area (32 km radius) around the study site could potentially support a 500-MW power plant.

Publication Date
DOI
10.1007/s12155-014-9433-9
Author(s)
Keri B. Cantrell , Jeffrey M. Novak , James R. Frederick , Douglas L. Karlen , Donald W. Watts
Subscribe to Residue removal